Source code for pykeen.models.base

# -*- coding: utf-8 -*-

"""Base module for all KGE models."""

from __future__ import annotations

import functools
import inspect
import logging
import os
import pickle
import warnings
from abc import ABC, abstractmethod
from typing import Any, ClassVar, Iterable, Mapping, Optional, Sequence, Type, Union

import pandas as pd
import torch
from class_resolver import HintOrType, OptionalKwargs
from docdata import parse_docdata
from torch import nn

from ..losses import Loss, MarginRankingLoss, loss_resolver
from ..nn.representation import Representation, build_representation
from ..regularizers import NoRegularizer, Regularizer
from ..triples import KGInfo, relation_inverter
from ..typing import LABEL_HEAD, LABEL_RELATION, LABEL_TAIL, InductiveMode, MappedTriples, ScorePack, Target
from ..utils import NoRandomSeedNecessary, extend_batch, get_preferred_device, set_random_seed

__all__ = [
    "Model",
    "_OldAbstractModel",
    "EntityRelationEmbeddingModel",
]

logger = logging.getLogger(__name__)


[docs]class Model(nn.Module, ABC): """A base module for KGE models. Subclasses of :class:`Model` can decide however they want on how to store entities' and relations' representations, how they want to be looked up, and how they should be scored. The :class:`OModel` provides a commonly used interface for models storing entity and relation representations in the form of :class:`pykeen.nn.Embedding`. """ #: The default strategy for optimizing the model's hyper-parameters hpo_default: ClassVar[Mapping[str, Any]] _random_seed: Optional[int] #: The default loss function class loss_default: ClassVar[Type[Loss]] = MarginRankingLoss #: The default parameters for the default loss function class loss_default_kwargs: ClassVar[Optional[Mapping[str, Any]]] = dict(margin=1.0, reduction="mean") #: The instance of the loss loss: Loss num_entities: int num_relations: int use_inverse_triples: bool can_slice_h: ClassVar[bool] can_slice_r: ClassVar[bool] can_slice_t: ClassVar[bool] def __init__( self, *, triples_factory: KGInfo, loss: HintOrType[Loss] = None, loss_kwargs: Optional[Mapping[str, Any]] = None, predict_with_sigmoid: bool = False, random_seed: Optional[int] = None, ) -> None: """Initialize the module. :param triples_factory: The triples factory facilitates access to the dataset. :param loss: The loss to use. If None is given, use the loss default specific to the model subclass. :param predict_with_sigmoid: Whether to apply sigmoid onto the scores when predicting scores. Applying sigmoid at prediction time may lead to exactly equal scores for certain triples with very high, or very low score. When not trained with applying sigmoid (or using BCEWithLogitsLoss), the scores are not calibrated to perform well with sigmoid. :param random_seed: A random seed to use for initialising the model's weights. **Should** be set when aiming at reproducibility. """ super().__init__() # Random seeds have to set before the embeddings are initialized if random_seed is None: logger.warning("No random seed is specified. This may lead to non-reproducible results.") self._random_seed = None elif random_seed is not NoRandomSeedNecessary: set_random_seed(random_seed) self._random_seed = random_seed # Loss if loss is None: self.loss = self.loss_default(**(self.loss_default_kwargs or {})) else: self.loss = loss_resolver.make(loss, pos_kwargs=loss_kwargs) self.use_inverse_triples = triples_factory.create_inverse_triples self.num_entities = triples_factory.num_entities self.num_relations = triples_factory.num_relations """ When predict_with_sigmoid is set to True, the sigmoid function is applied to the logits during evaluation and also for predictions after training, but has no effect on the training. """ self.predict_with_sigmoid = predict_with_sigmoid @property def num_real_relations(self) -> int: """Return the real number of relations (without inverses).""" if self.use_inverse_triples: return self.num_relations // 2 return self.num_relations def __init_subclass__(cls, **kwargs): """Initialize the subclass. This checks for all subclasses if they are tagged with :class:`abc.ABC` with :func:`inspect.isabstract`. All non-abstract deriving models should have citation information. Subclasses can further override ``__init_subclass__``, but need to remember to call ``super().__init_subclass__`` as well so this gets run. """ if not inspect.isabstract(cls): parse_docdata(cls) @property def device(self) -> torch.device: """Return the model's device.""" return get_preferred_device(self, allow_ambiguity=False)
[docs] def reset_parameters_(self): # noqa: D401 """Reset all parameters of the model and enforce model constraints.""" self._reset_parameters_() # TODO: why do we need to empty the cache? torch.cuda.empty_cache() self.post_parameter_update() return self
"""Base methods"""
[docs] def post_forward_pass(self): """Run after calculating the forward loss."""
def _free_graph_and_cache(self): """Run to free the graph and cache.""" """Abstract methods""" @abstractmethod def _reset_parameters_(self): # noqa: D401 """Reset all parameters of the model in-place.""" @abstractmethod def _get_entity_len(self, *, mode: Optional[InductiveMode]) -> Optional[int]: """Get the number of entities depending on the mode parameters."""
[docs] def post_parameter_update(self) -> None: """Has to be called after each parameter update."""
"""Abstract methods - Scoring"""
[docs] @abstractmethod def score_hrt(self, hrt_batch: torch.LongTensor, *, mode: Optional[InductiveMode] = None) -> torch.FloatTensor: """Forward pass. This method takes head, relation and tail of each triple and calculates the corresponding score. :param hrt_batch: shape: (batch_size, 3), dtype: long The indices of (head, relation, tail) triples. :param mode: The pass mode, which is None in the transductive setting and one of "training", "validation", or "testing" in the inductive setting. :return: shape: (batch_size, 1), dtype: float The score for each triple. """
[docs] @abstractmethod def score_t( self, hr_batch: torch.LongTensor, *, slice_size: Optional[int] = None, mode: Optional[InductiveMode] = None ) -> torch.FloatTensor: """Forward pass using right side (tail) prediction. This method calculates the score for all possible tails for each (head, relation) pair. :param hr_batch: shape: (batch_size, 2), dtype: long The indices of (head, relation) pairs. :param slice_size: >0 The divisor for the scoring function when using slicing. :param mode: The pass mode, which is None in the transductive setting and one of "training", "validation", or "testing" in the inductive setting. :return: shape: (batch_size, num_entities), dtype: float For each h-r pair, the scores for all possible tails. """
[docs] @abstractmethod def score_r( self, ht_batch: torch.LongTensor, *, slice_size: Optional[int] = None, mode: Optional[InductiveMode] = None ) -> torch.FloatTensor: """Forward pass using middle (relation) prediction. This method calculates the score for all possible relations for each (head, tail) pair. :param ht_batch: shape: (batch_size, 2), dtype: long The indices of (head, tail) pairs. :param slice_size: >0 The divisor for the scoring function when using slicing. :param mode: The pass mode, which is None in the transductive setting and one of "training", "validation", or "testing" in the inductive setting. :return: shape: (batch_size, num_real_relations), dtype: float For each h-t pair, the scores for all possible relations. """
# TODO: this currently compute (batch_size, num_relations) instead, # i.e., scores for normal and inverse relations
[docs] @abstractmethod def score_h( self, rt_batch: torch.LongTensor, *, slice_size: Optional[int] = None, mode: Optional[InductiveMode] = None ) -> torch.FloatTensor: """Forward pass using left side (head) prediction. This method calculates the score for all possible heads for each (relation, tail) pair. :param rt_batch: shape: (batch_size, 2), dtype: long The indices of (relation, tail) pairs. :param slice_size: >0 The divisor for the scoring function when using slicing. :param mode: The pass mode, which is None in the transductive setting and one of "training", "validation", or "testing" in the inductive setting. :return: shape: (batch_size, num_entities), dtype: float For each r-t pair, the scores for all possible heads. """
[docs] @abstractmethod def collect_regularization_term(self) -> torch.FloatTensor: """Get the regularization term for the loss function."""
"""Concrete methods"""
[docs] def get_grad_params(self) -> Iterable[nn.Parameter]: """Get the parameters that require gradients.""" # TODO: Why do we need that? The optimizer takes care of filtering the parameters. return filter(lambda p: p.requires_grad, self.parameters())
@property def num_parameter_bytes(self) -> int: """Calculate the number of bytes used for all parameters of the model.""" return sum(param.numel() * param.element_size() for param in self.parameters(recurse=True)) @property def num_parameters(self) -> int: """Calculate the number of parameters of the model.""" return sum(param.numel() for param in self.parameters(recurse=True))
[docs] def save_state(self, path: Union[str, os.PathLike]) -> None: """Save the state of the model. :param path: Path of the file where to store the state in. """ torch.save(self.state_dict(), path, pickle_protocol=pickle.HIGHEST_PROTOCOL)
[docs] def load_state(self, path: Union[str, os.PathLike]) -> None: """Load the state of the model. :param path: Path of the file where to load the state from. """ self.load_state_dict(torch.load(path, map_location=self.device))
"""Prediction methods""" def _prepare_batch(self, batch: torch.LongTensor, index_relation: int) -> torch.LongTensor: # send to device batch = batch.to(self.device) # special handling of inverse relations if not self.use_inverse_triples: return batch # when trained on inverse relations, the internal relation ID is twice the original relation ID return relation_inverter.map(batch=batch, index=index_relation, invert=False)
[docs] def predict_hrt(self, hrt_batch: torch.LongTensor, *, mode: Optional[InductiveMode] = None) -> torch.FloatTensor: """Calculate the scores for triples. This method takes head, relation and tail of each triple and calculates the corresponding score. Additionally, the model is set to evaluation mode. :param hrt_batch: shape: (number of triples, 3), dtype: long The indices of (head, relation, tail) triples. :param mode: The pass mode. Is None for transductive and "training" / "validation" / "testing" in inductive. :return: shape: (number of triples, 1), dtype: float The score for each triple. """ self.eval() # Enforce evaluation mode scores = self.score_hrt(self._prepare_batch(batch=hrt_batch, index_relation=1), mode=mode) if self.predict_with_sigmoid: scores = torch.sigmoid(scores) return scores
[docs] def predict_h( self, rt_batch: torch.LongTensor, *, slice_size: Optional[int] = None, mode: Optional[InductiveMode] = None ) -> torch.FloatTensor: """Forward pass using left side (head) prediction for obtaining scores of all possible heads. This method calculates the score for all possible heads for each (relation, tail) pair. .. note:: If the model has been trained with inverse relations, the task of predicting the head entities becomes the task of predicting the tail entities of the inverse triples, i.e., $f(*,r,t)$ is predicted by means of $f(t,r_{inv},*)$. Additionally, the model is set to evaluation mode. :param rt_batch: shape: (batch_size, 2), dtype: long The indices of (relation, tail) pairs. :param slice_size: >0 The divisor for the scoring function when using slicing. :param mode: The pass mode. Is None for transductive and "training" / "validation" / "testing" in inductive. :return: shape: (batch_size, num_entities), dtype: float For each r-t pair, the scores for all possible heads. """ self.eval() # Enforce evaluation mode rt_batch = self._prepare_batch(batch=rt_batch, index_relation=0) if self.use_inverse_triples: scores = self.score_h_inverse(rt_batch=rt_batch, slice_size=slice_size, mode=mode) else: scores = self.score_h(rt_batch, slice_size=slice_size, mode=mode) if self.predict_with_sigmoid: scores = torch.sigmoid(scores) return scores
[docs] def predict_t( self, hr_batch: torch.LongTensor, *, slice_size: Optional[int] = None, mode: Optional[InductiveMode] = None, ) -> torch.FloatTensor: """Forward pass using right side (tail) prediction for obtaining scores of all possible tails. This method calculates the score for all possible tails for each (head, relation) pair. Additionally, the model is set to evaluation mode. :param hr_batch: shape: (batch_size, 2), dtype: long The indices of (head, relation) pairs. :param slice_size: >0 The divisor for the scoring function when using slicing. :param mode: The pass mode. Is None for transductive and "training" / "validation" / "testing" in inductive. :return: shape: (batch_size, num_entities), dtype: float For each h-r pair, the scores for all possible tails. .. note:: We only expect the right side-predictions, i.e., $(h,r,*)$ to change its default behavior when the model has been trained with inverse relations (mainly because of the behavior of the LCWA training approach). This is why the :func:`predict_h` has different behavior depending on if inverse triples were used in training, and why this function has the same behavior regardless of the use of inverse triples. """ self.eval() # Enforce evaluation mode hr_batch = self._prepare_batch(batch=hr_batch, index_relation=1) scores = self.score_t(hr_batch, slice_size=slice_size, mode=mode) if self.predict_with_sigmoid: scores = torch.sigmoid(scores) return scores
[docs] def predict_r( self, ht_batch: torch.LongTensor, *, slice_size: Optional[int] = None, mode: Optional[InductiveMode], ) -> torch.FloatTensor: """Forward pass using middle (relation) prediction for obtaining scores of all possible relations. This method calculates the score for all possible relations for each (head, tail) pair. Additionally, the model is set to evaluation mode. :param ht_batch: shape: (batch_size, 2), dtype: long The indices of (head, tail) pairs. :param slice_size: >0 The divisor for the scoring function when using slicing. :param mode: The pass mode. Is None for transductive and "training" / "validation" / "testing" in inductive. :return: shape: (batch_size, num_real_relations), dtype: float For each h-t pair, the scores for all possible relations. """ self.eval() # Enforce evaluation mode ht_batch = ht_batch.to(self.device) scores = self.score_r(ht_batch, slice_size=slice_size, mode=mode) if self.predict_with_sigmoid: scores = torch.sigmoid(scores) return scores
[docs] def predict( self, hrt_batch: MappedTriples, target: Target, *, slice_size: Optional[int] = None, mode: Optional[InductiveMode], ) -> torch.FloatTensor: """Predict scores for the given target.""" if target == LABEL_TAIL: return self.predict_t(hrt_batch[:, 0:2], slice_size=slice_size, mode=mode) if target == LABEL_RELATION: return self.predict_r(hrt_batch[:, [0, 2]], slice_size=slice_size, mode=mode) if target == LABEL_HEAD: return self.predict_h(hrt_batch[:, 1:3], slice_size=slice_size, mode=mode) raise ValueError(f"Unknown target={target}")
[docs] def get_all_prediction_df( self, *, k: Optional[int] = None, batch_size: int = 1, **kwargs, ) -> Union[ScorePack, pd.DataFrame]: """Compute scores for all triples, optionally returning only the k highest scoring. .. note:: This operation is computationally very expensive for reasonably-sized knowledge graphs. .. warning:: Setting k=None may lead to huge memory requirements. :param k: The number of triples to return. Set to None, to keep all. :param batch_size: The batch size to use for calculating scores. :param kwargs: Additional kwargs to pass to :func:`pykeen.models.predict.get_all_prediction_df`. :return: shape: (k, 3) A tensor containing the k highest scoring triples, or all possible triples if k=None. """ from .predict import get_all_prediction_df warnings.warn("Use pykeen.models.predict.get_all_prediction_df", DeprecationWarning) return get_all_prediction_df(model=self, k=k, batch_size=batch_size, **kwargs)
[docs] def get_head_prediction_df( self, relation_label: str, tail_label: str, **kwargs, ) -> pd.DataFrame: """Predict heads for the given relation and tail (given by label). :param relation_label: The string label for the relation :param tail_label: The string label for the tail entity :param kwargs: Keyword arguments passed to :func:`pykeen.models.predict.get_head_prediction_df` The following example shows that after you train a model on the Nations dataset, you can score all entities w.r.t a given relation and tail entity. >>> from pykeen.pipeline import pipeline >>> result = pipeline( ... dataset='Nations', ... model='RotatE', ... ) >>> df = result.model.get_head_prediction_df('accusation', 'brazil', triples_factory=result.training) """ from .predict import get_head_prediction_df warnings.warn("Use pykeen.models.predict.get_head_prediction_df", DeprecationWarning) return get_head_prediction_df(self, relation_label=relation_label, tail_label=tail_label, **kwargs)
[docs] def get_relation_prediction_df( self, head_label: str, tail_label: str, **kwargs, ) -> pd.DataFrame: """Predict relations for the given head and tail (given by label). :param head_label: The string label for the head entity :param tail_label: The string label for the tail entity :param kwargs: Keyword arguments passed to :func:`pykeen.models.predict.get_relation_prediction_df` """ from .predict import get_relation_prediction_df warnings.warn("Use pykeen.models.predict.get_relation_prediction_df", DeprecationWarning) return get_relation_prediction_df(self, head_label=head_label, tail_label=tail_label, **kwargs)
[docs] def get_tail_prediction_df( self, head_label: str, relation_label: str, **kwargs, ) -> pd.DataFrame: """Predict tails for the given head and relation (given by label). :param head_label: The string label for the head entity :param relation_label: The string label for the relation :param kwargs: Keyword arguments passed to :func:`pykeen.models.predict.get_tail_prediction_df` The following example shows that after you train a model on the Nations dataset, you can score all entities w.r.t a given head entity and relation. >>> from pykeen.pipeline import pipeline >>> result = pipeline( ... dataset='Nations', ... model='RotatE', ... ) >>> df = result.model.get_tail_prediction_df('brazil', 'accusation', triples_factory=result.training) """ from .predict import get_tail_prediction_df warnings.warn("Use pykeen.models.predict.get_tail_prediction_df", DeprecationWarning) return get_tail_prediction_df(self, head_label=head_label, relation_label=relation_label, **kwargs)
"""Inverse scoring""" def _prepare_inverse_batch(self, batch: torch.LongTensor, index_relation: int) -> torch.LongTensor: if not self.use_inverse_triples: raise ValueError( "Your model is not configured to predict with inverse relations." " Set ``create_inverse_triples=True`` when creating the dataset/triples factory" " or using the pipeline().", ) return relation_inverter.invert_(batch=batch, index=index_relation).flip(1)
[docs] def score_hrt_inverse( self, hrt_batch: torch.LongTensor, *, mode: Optional[InductiveMode], ) -> torch.FloatTensor: r"""Score triples based on inverse triples, i.e., compute $f(h,r,t)$ based on $f(t,r_{inv},h)$. When training with inverse relations, the model produces two (different) scores for a triple $(h,r,t) \in K$. The forward score is calculated from $f(h,r,t)$ and the inverse score is calculated from $f(t,r_{inv},h)$. This function enables users to inspect the scores obtained by using the corresponding inverse triples. """ t_r_inv_h = self._prepare_inverse_batch(batch=hrt_batch, index_relation=1) return self.score_hrt(hrt_batch=t_r_inv_h, mode=mode)
[docs] def score_t_inverse( self, hr_batch: torch.LongTensor, *, slice_size: Optional[int] = None, mode: Optional[InductiveMode] ): """Score all tails for a batch of (h,r)-pairs using the head predictions for the inverses $(*,r_{inv},h)$.""" r_inv_h = self._prepare_inverse_batch(batch=hr_batch, index_relation=1) return self.score_h(rt_batch=r_inv_h, slice_size=slice_size, mode=mode)
[docs] def score_h_inverse( self, rt_batch: torch.LongTensor, *, slice_size: Optional[int] = None, mode: Optional[InductiveMode] ): """Score all heads for a batch of (r,t)-pairs using the tail predictions for the inverses $(t,r_{inv},*)$.""" t_r_inv = self._prepare_inverse_batch(batch=rt_batch, index_relation=0) return self.score_t(hr_batch=t_r_inv, slice_size=slice_size, mode=mode)
[docs]class _OldAbstractModel(Model, ABC, autoreset=False): """A base module for PyKEEN 1.0-style KGE models.""" #: The default regularizer class regularizer_default: ClassVar[Optional[Type[Regularizer]]] = None #: The default parameters for the default regularizer class regularizer_default_kwargs: ClassVar[Optional[Mapping[str, Any]]] = None #: The instance of the regularizer regularizer: Regularizer # type: ignore can_slice_h = False can_slice_r = False can_slice_t = False def __init__( self, *, triples_factory: KGInfo, regularizer: Optional[Regularizer] = None, **kwargs, ) -> None: """Initialize the module. :param triples_factory: The triples factory facilitates access to the dataset. :param regularizer: A regularizer to use for training. :param kwargs: additional keyword-based arguments passed to Model.__init__ """ super().__init__(triples_factory=triples_factory, **kwargs) # Regularizer if regularizer is not None: self.regularizer = regularizer elif self.regularizer_default is not None: self.regularizer = self.regularizer_default( **(self.regularizer_default_kwargs or {}), ) else: self.regularizer = NoRegularizer() def __init_subclass__(cls, autoreset: bool = True, **kwargs): # noqa:D105 super().__init_subclass__(**kwargs) if autoreset: _add_post_reset_parameters(cls) def _get_entity_len(self, mode: Optional[InductiveMode] = None) -> int: # noqa:D105 if mode is not None: raise ValueError return self.num_entities
[docs] def post_parameter_update(self) -> None: """Has to be called after each parameter update.""" self.regularizer.reset()
[docs] def regularize_if_necessary(self, *tensors: torch.FloatTensor) -> None: """Update the regularizer's term given some tensors, if regularization is requested. :param tensors: The tensors that should be passed to the regularizer to update its term. """ if self.training: self.regularizer.update(*tensors)
[docs] def score_t( self, hr_batch: torch.LongTensor, *, slice_size: Optional[int] = None, mode: Optional[InductiveMode] = None ) -> torch.FloatTensor: """Forward pass using right side (tail) prediction. This method calculates the score for all possible tails for each (head, relation) pair. :param hr_batch: shape: (batch_size, 2), dtype: long The indices of (head, relation) pairs. :param slice_size: >0 The divisor for the scoring function when using slicing. :param mode: The pass mode, which is None in the transductive setting and one of "training", "validation", or "testing" in the inductive setting. :return: shape: (batch_size, num_entities), dtype: float For each h-r pair, the scores for all possible tails. """ logger.warning( "Calculations will fall back to using the score_hrt method, since this model does not have a specific " "score_t function. This might cause the calculations to take longer than necessary.", ) # Extend the hr_batch such that each (h, r) pair is combined with all possible tails hrt_batch = extend_batch(batch=hr_batch, max_id=self.num_entities, dim=2) # Calculate the scores for each (h, r, t) triple using the generic interaction function expanded_scores = self.score_hrt(hrt_batch=hrt_batch, mode=mode) # Reshape the scores to match the pre-defined output shape of the score_t function. scores = expanded_scores.view(hr_batch.shape[0], -1) return scores
[docs] def score_h( self, rt_batch: torch.LongTensor, *, slice_size: Optional[int] = None, mode: Optional[InductiveMode] = None ) -> torch.FloatTensor: """Forward pass using left side (head) prediction. This method calculates the score for all possible heads for each (relation, tail) pair. :param rt_batch: shape: (batch_size, 2), dtype: long The indices of (relation, tail) pairs. :param slice_size: >0 The divisor for the scoring function when using slicing. :param mode: The pass mode, which is None in the transductive setting and one of "training", "validation", or "testing" in the inductive setting. :return: shape: (batch_size, num_entities), dtype: float For each r-t pair, the scores for all possible heads. """ logger.warning( "Calculations will fall back to using the score_hrt method, since this model does not have a specific " "score_h function. This might cause the calculations to take longer than necessary.", ) # Extend the rt_batch such that each (r, t) pair is combined with all possible heads hrt_batch = extend_batch(batch=rt_batch, max_id=self.num_entities, dim=0) # Calculate the scores for each (h, r, t) triple using the generic interaction function expanded_scores = self.score_hrt(hrt_batch=hrt_batch, mode=mode) # Reshape the scores to match the pre-defined output shape of the score_h function. scores = expanded_scores.view(rt_batch.shape[0], -1) return scores
[docs] def score_r( self, ht_batch: torch.LongTensor, *, slice_size: Optional[int] = None, mode: Optional[InductiveMode] = None ) -> torch.FloatTensor: """Forward pass using middle (relation) prediction. This method calculates the score for all possible relations for each (head, tail) pair. :param ht_batch: shape: (batch_size, 2), dtype: long The indices of (head, tail) pairs. :param slice_size: >0 The divisor for the scoring function when using slicing. :param mode: The pass mode, which is None in the transductive setting and one of "training", "validation", or "testing" in the inductive setting. :return: shape: (batch_size, num_relations), dtype: float For each h-t pair, the scores for all possible relations. """ logger.warning( "Calculations will fall back to using the score_hrt method, since this model does not have a specific " "score_r function. This might cause the calculations to take longer than necessary.", ) # Extend the ht_batch such that each (h, t) pair is combined with all possible relations hrt_batch = extend_batch(batch=ht_batch, max_id=self.num_relations, dim=1) # Calculate the scores for each (h, r, t) triple using the generic interaction function expanded_scores = self.score_hrt(hrt_batch=hrt_batch, mode=mode) # Reshape the scores to match the pre-defined output shape of the score_r function. scores = expanded_scores.view(ht_batch.shape[0], -1) return scores
# docstr-coverage: inherited
[docs] def collect_regularization_term(self) -> torch.FloatTensor: # noqa: D102 return self.regularizer.term
[docs] def post_forward_pass(self): """Run after calculating the forward loss.""" self.regularizer.reset()
def _free_graph_and_cache(self): self.regularizer.reset()
[docs]class EntityRelationEmbeddingModel(_OldAbstractModel, ABC, autoreset=False): """A base module for KGE models that have different embeddings for entities and relations.""" #: Primary embeddings for entities entity_embeddings: Representation #: Primary embeddings for relations relation_embeddings: Representation def __init__( self, *, triples_factory: KGInfo, entity_representations: HintOrType[Representation] = None, entity_representations_kwargs: OptionalKwargs = None, relation_representations: HintOrType[Representation] = None, relation_representations_kwargs: OptionalKwargs = None, **kwargs, ) -> None: """Initialize the entity embedding model. .. seealso:: Constructor of the base class :class:`pykeen.models.Model` """ super().__init__(triples_factory=triples_factory, **kwargs) self.entity_embeddings = build_representation( max_id=triples_factory.num_entities, representation=entity_representations, representation_kwargs=entity_representations_kwargs, ) self.relation_embeddings = build_representation( max_id=triples_factory.num_relations, representation=relation_representations, representation_kwargs=relation_representations_kwargs, ) @property def embedding_dim(self) -> int: # noqa:D401 """The entity embedding dimension.""" return self.entity_embeddings.embedding_dim @property def entity_representations(self) -> Sequence[Representation]: # noqa:D401 """The entity representations. This property provides forward compatibility with the new-style :class:`pykeen.models.ERModel`. """ return [self.entity_embeddings] @property def relation_representations(self) -> Sequence[Representation]: # noqa:D401 """The relation representations. This property provides forward compatibility with the new-style :class:`pykeen.models.ERModel`. """ return [self.relation_embeddings] # docstr-coverage: inherited def _reset_parameters_(self): # noqa: D102 self.entity_embeddings.reset_parameters() self.relation_embeddings.reset_parameters() # docstr-coverage: inherited
[docs] def post_parameter_update(self) -> None: # noqa: D102 # make sure to call this first, to reset regularizer state! super().post_parameter_update() self.entity_embeddings.post_parameter_update() self.relation_embeddings.post_parameter_update()
def _add_post_reset_parameters(cls: Type[Model]) -> None: # The following lines add in a post-init hook to all subclasses # such that the reset_parameters_() function is run _original_init = cls.__init__ @functools.wraps(_original_init) def _new_init(self, *args, **kwargs): _original_init(self, *args, **kwargs) self.reset_parameters_() # sorry mypy, but this kind of evil must be permitted. cls.__init__ = _new_init # type: ignore