Initialization

Embedding weight initialization routines.

class LabelBasedInitializer(labels, pretrained_model_name_or_path='bert-base-cased', batch_size=None, max_length=None)[source]

An initializer using pretrained models from the transformers library to encode labels.

Example Usage:

Initialize entity representations as Transformer encodings of their labels. Afterwards, the parameters are detached from the labels, and trained on the KGE task without any further connection to the Transformer model.

from pykeen.datasets import get_dataset
from pykeen.nn.init import LabelBasedInitializer
from pykeen.models import ERMLPE

dataset = get_dataset(dataset="nations")
model = ERMLPE(
    embedding_dim=768,  # for BERT base
    entity_initializer=LabelBasedInitializer.from_triples_factory(
        triples_factory=dataset.training,
    ),
)

Initialize the initializer.

Parameters
  • labels (Sequence[str]) – the labels

  • pretrained_model_name_or_path (str) – the name of the pretrained model, or a path, cf. transformers.AutoModel.from_pretrained()

  • batch_size (Optional[int]) – >0 the (maximum) batch size to use while encoding. If None, use len(labels), i.e., only a single batch.

  • max_length (Optional[int]) – >0 the maximum number of tokens to pad/trim the labels to

Raises

ImportError – if the transformers library could not be imported

classmethod from_triples_factory(triples_factory, for_entities=True, **kwargs)[source]

Prepare a label-based initializer with labels from a triples factory.

Parameters
  • triples_factory (TriplesFactory) – the triples factory

  • for_entities (bool) – whether to create the initializer for entities (or relations)

  • kwargs – additional keyword-based arguments passed to LabelBasedInitializer.__init__()

Return type

LabelBasedInitializer

Returns

A label-based initializer

Raises

ImportError – if the transformers library could not be imported

class PretrainedInitializer(tensor)[source]

Initialize tensor with pretrained weights.

Example usage:

import torch
from pykeen.pipeline import pipeline
from pykeen.nn.init import create_init_from_pretrained

# this is usually loaded from somewhere else
# the shape must match, as well as the entity-to-id mapping
pretrained_embedding_tensor = torch.rand(14, 128)

result = pipeline(
    dataset="nations",
    model="transe",
    model_kwargs=dict(
        embedding_dim=pretrained_embedding_tensor.shape[-1],
        entity_initializer=PretrainedInitializer(tensor=pretrained_embedding_tensor),
    ),
)

Initialize the initializer.

Parameters

tensor (FloatTensor) – the tensor of pretrained embeddings.

class RandomWalkPositionalEncodingInitializer(*, triples_factory=None, mapped_triples=None, edge_index=None, dim, num_entities=None, space_dim=0, skip_first_power=True)[source]

Initialize nodes via random-walk positional encoding.

The random walk positional encoding is given as

\[\mathbf{x}_i = [\mathbf{R}_{i, i}, \mathbf{R}^{2}_{i, i}, \ldots, \mathbf{R}^{d}_{i, i}] \in \mathbb{R}^{d}\]

where \(\mathbf{R} := \mathbf{A}\mathbf{D}^{-1}\) is the random walk matrix, with \(\mathbf{D} := \sum_i \mathbf{A}_{i, i}\).

Initialize the positional encoding.

One of triples_factory, mapped_triples or edge_index will be used. The preference order is:

  1. triples_factory

  2. mapped_triples

  3. edge_index

Parameters
  • triples_factory (Optional[CoreTriplesFactory]) – the triples factory

  • mapped_triples (Optional[LongTensor]) – shape: (m, 3) the mapped triples

  • edge_index (Optional[Tensor]) – shape: (2, m) the edge index

  • dim (int) – the dimensionality

  • num_entities (Optional[int]) – the number of entities. If None, it will be inferred from edge_index

  • space_dim (int) – estimated dimensionality of the space. Used to correct the random-walk diagonal by a factor k^(space_dim/2). In euclidean space, this correction means that the height of the gaussian distribution stays almost constant across the number of steps, if space_dim is the dimension of the euclidean space.

  • skip_first_power (bool) – in most cases the adjacencies diagonal values will be zeros (since reflexive edges are not that common). This flag enables skipping the first matrix power.

init_phases(x)[source]

Generate random phases between 0 and \(2\pi\).

Note

This method works on the canonical torch real representation of complex tensors, cf. https://pytorch.org/docs/stable/complex_numbers.html

Parameters

x (Tensor) – a tensor to initialize

Return type

Tensor

Returns

tensor with weights set by this initializer

xavier_normal_(tensor, gain=1.0)[source]

Initialize weights of the tensor similarly to Glorot/Xavier initialization.

Proceed as if it was a linear layer with fan_in of zero, fan_out of prod(tensor.shape[1:]) and Xavier Normal initialization is used, i.e. fill the weight of input tensor with values sampled from \(\mathcal{N}(0, \text{std}^2)\) where

\[\text{std} = \text{gain} \times \sqrt{\frac{2}{\text{fan\_out}}}\]

Example: >>> w = torch.empty(3, 5) >>> pykeen.nn.init.xavier_normal_(w, gain=torch.nn.init.calculate_gain(“relu”))

Parameters
  • tensor (Tensor) – a tensor to initialize

  • gain (float) – an optional scaling factor, defaults to 1.0.

Return type

Tensor

Returns

tensor with weights by this initializer.

xavier_uniform_(tensor, gain=1.0)[source]

Initialize weights of the tensor similarly to Glorot/Xavier initialization.

Proceed as if it was a linear layer with fan_in of zero, fan_out of prod(tensor.shape[1:]) and Xavier uniform initialization is used, i.e. fill the weight of input tensor with values sampled from \(\mathcal{U}(-a, a)\) where

\[a = \text{gain} \times \sqrt{\frac{6}{\text{fan\_out}}}\]

Example: >>> w = torch.empty(3, 5) >>> pykeen.nn.init.xavier_uniform_(w, gain=torch.nn.init.calculate_gain(“relu”))

Parameters
  • tensor (Tensor) – a tensor to initialize

  • gain (float) – an optional scaling factor, defaults to 1.0.

Return type

Tensor

Returns

tensor with weights by this initializer.