Source code for pykeen.models.unimodal.conv_kb

"""Implementation of the ConvKB model."""

import logging
from collections.abc import Mapping
from typing import Any, ClassVar, Optional

from torch.nn.init import uniform_

from ..nbase import ERModel
from ...constants import DEFAULT_DROPOUT_HPO_RANGE, DEFAULT_EMBEDDING_HPO_EMBEDDING_DIM_RANGE
from ...nn.modules import ConvKBInteraction
from ...regularizers import LpRegularizer, Regularizer
from ...typing import Hint, Initializer

__all__ = [
    "ConvKB",
]

logger = logging.getLogger(__name__)


[docs] class ConvKB(ERModel): r"""An implementation of ConvKB from [nguyen2018]_. ConvKB represents entities and relations using a $d$-dimensional embedding vectors, which are stored as :class:`~pykeen.nn.representation.Embedding`. :class:`~pykeen.nn.modules.ConvKBInteraction` is used to obtain triple scores. .. seealso:: - Authors' `implementation of ConvKB <https://github.com/daiquocnguyen/ConvKB>`_ --- citation: author: Nguyen year: 2018 link: https://www.aclweb.org/anthology/N18-2053 github: daiquocnguyen/ConvKB """ #: The default strategy for optimizing the model's hyper-parameters hpo_default: ClassVar[Mapping[str, Any]] = dict( embedding_dim=DEFAULT_EMBEDDING_HPO_EMBEDDING_DIM_RANGE, hidden_dropout_rate=DEFAULT_DROPOUT_HPO_RANGE, num_filters=dict(type=int, low=7, high=9, scale="power_two"), ) #: The regularizer used by [nguyen2018]_ for ConvKB. regularizer_default: ClassVar[type[Regularizer]] = LpRegularizer #: The LP settings used by [nguyen2018]_ for ConvKB. regularizer_default_kwargs: ClassVar[Mapping[str, Any]] = dict( weight=0.001 / 2, p=2.0, normalize=True, apply_only_once=True, ) def __init__( self, *, embedding_dim: int = 200, hidden_dropout_rate: float = 0.0, num_filters: int = 400, regularizer: Optional[Regularizer] = None, entity_initializer: Hint[Initializer] = uniform_, relation_initializer: Hint[Initializer] = uniform_, **kwargs, ) -> None: """Initialize the model. :param embedding_dim: The entity embedding dimension $d$. :param hidden_dropout_rate: The hidden dropout rate :param num_filters: The number of convolutional filters to use :param regularizer: The regularizer to use. Defaults to $L_p$ :param entity_initializer: Entity initializer function. Defaults to :func:`torch.nn.init.uniform_` :param relation_initializer: Relation initializer function. Defaults to :func:`torch.nn.init.uniform_` :param kwargs: Remaining keyword arguments passed through to :class:`pykeen.models.EntityRelationEmbeddingModel`. To be consistent with the paper, pass entity and relation embeddings pre-trained from TransE. """ super().__init__( interaction=ConvKBInteraction, interaction_kwargs=dict( hidden_dropout_rate=hidden_dropout_rate, embedding_dim=embedding_dim, num_filters=num_filters, ), entity_representations_kwargs=dict( shape=embedding_dim, initializer=entity_initializer, ), relation_representations_kwargs=dict( shape=embedding_dim, initializer=relation_initializer, ), **kwargs, ) regularizer = self._instantiate_regularizer(regularizer=regularizer) # In the code base only the weights of the output layer are used for regularization # c.f. https://github.com/daiquocnguyen/ConvKB/blob/73a22bfa672f690e217b5c18536647c7cf5667f1/model.py#L60-L66 if regularizer is not None: self.append_weight_regularizer( parameter=self.interaction.linear.parameters(), regularizer=regularizer, ) logger.warning("To be consistent with the paper, initialize entity and relation embeddings from TransE.")