Source code for pykeen.models.unimodal.tucker

"""Implementation of TuckEr."""

from collections.abc import Mapping
from typing import Any, ClassVar, Optional

from class_resolver import OptionalKwargs

from ..nbase import ERModel
from ...constants import DEFAULT_DROPOUT_HPO_RANGE, DEFAULT_EMBEDDING_HPO_EMBEDDING_DIM_RANGE
from ...losses import BCEAfterSigmoidLoss, Loss
from ...nn import TuckERInteraction
from ...nn.init import xavier_normal_
from ...typing import FloatTensor, Hint, Initializer

__all__ = [
    "TuckER",
]


[docs] class TuckER(ERModel[FloatTensor, FloatTensor, FloatTensor]): r"""An implementation of TuckEr from [balazevic2019]_. It represents entities by $d_e$-dimensional vectors and relations by $d_r$-dimensional vectors, stored in :class:`~pykeen.nn.representation.Embedding`. The state-ful :class:`~pykeen.nn.modules.TuckERInteraction` is then used to score triples. For $E$ entities and $R$ relations, the model has $Ed_e + Rd_r + d_e^2d_r$ effective parameters (ignoring additional parameters from the :class:`torch.nn.BatchNorm1d` layers in :class:`~pykeen.nn.modules.TuckERInteraction`). .. seealso:: - Official implementation: https://github.com/ibalazevic/TuckER - pykg2vec implementation of TuckEr https://github.com/Sujit-O/pykg2vec/blob/master/pykg2vec/core/TuckER.py --- citation: author: Balažević year: 2019 link: https://arxiv.org/abs/1901.09590 github: ibalazevic/TuckER """ #: The default strategy for optimizing the model's hyper-parameters hpo_default: ClassVar[Mapping[str, Any]] = dict( embedding_dim=DEFAULT_EMBEDDING_HPO_EMBEDDING_DIM_RANGE, relation_dim=DEFAULT_EMBEDDING_HPO_EMBEDDING_DIM_RANGE, dropout_0=DEFAULT_DROPOUT_HPO_RANGE, dropout_1=DEFAULT_DROPOUT_HPO_RANGE, dropout_2=DEFAULT_DROPOUT_HPO_RANGE, ) #: The default loss function class loss_default: ClassVar[type[Loss]] = BCEAfterSigmoidLoss #: The default parameters for the default loss function class loss_default_kwargs: ClassVar[Mapping[str, Any]] = {} def __init__( self, *, embedding_dim: int = 200, relation_dim: Optional[int] = None, dropout_0: float = 0.3, dropout_1: float = 0.4, dropout_2: float = 0.5, apply_batch_normalization: bool = True, entity_initializer: Hint[Initializer] = xavier_normal_, relation_initializer: Hint[Initializer] = xavier_normal_, core_tensor_initializer: Hint[Initializer] = None, core_tensor_initializer_kwargs: OptionalKwargs = None, **kwargs, ) -> None: """ Initialize the model. :param embedding_dim: the (entity) embedding dimension :param relation_dim: the relation embedding dimension. Defaults to `embedding_dim`. :param dropout_0: the first dropout, cf. formula :param dropout_1: the second dropout, cf. formula :param dropout_2: the third dropout, cf. formula :param apply_batch_normalization: whether to apply batch normalization :param entity_initializer: the entity representation initializer :param relation_initializer: the relation representation initializer :param core_tensor_initializer: the core tensor initializer :param core_tensor_initializer_kwargs: keyword-based parameters passed to the core tensor initializer :param kwargs: additional keyword-based parameters passed to :meth:`ERModel.__init__` """ relation_dim = relation_dim or embedding_dim super().__init__( interaction=TuckERInteraction, interaction_kwargs=dict( embedding_dim=embedding_dim, relation_dim=relation_dim, head_dropout=dropout_0, # TODO: rename relation_dropout=dropout_1, head_relation_dropout=dropout_2, apply_batch_normalization=apply_batch_normalization, core_initializer=core_tensor_initializer, core_initializer_kwargs=core_tensor_initializer_kwargs, ), entity_representations_kwargs=dict( shape=embedding_dim, initializer=entity_initializer, ), relation_representations_kwargs=dict( shape=relation_dim, initializer=relation_initializer, ), **kwargs, )