InverseGeometricMeanRank

class InverseGeometricMeanRank[source]

Bases: RankBasedMetric

The inverse geometric mean rank.

The mean rank corresponds to the arithmetic mean, and tends to be more affected by high rank values. The mean reciprocal rank corresponds to the harmonic mean, and tends to be more affected by low rank values. The remaining Pythagorean mean, the geometric mean, lies in the center and therefore could better balance these biases. Therefore, the inverse geometric mean rank (IGMR) is defined as:

\[IGMR = \sqrt[\|\mathcal{I}\|]{\prod \limits_{r \in \mathcal{I}} r}\]

Note

This metric is novel as of its implementation in PyKEEN and was proposed by Max Berrendorf

Attributes Summary

binarize

whether the metric needs binarized scores

closed_expectation

whether there is a closed-form solution of the expectation

closed_variance

whether there is a closed-form solution of the variance

increasing

whether it is increasing, i.e., larger values are better

key

Return the key for use in metric result dictionaries.

name

The name of the metric

needs_candidates

whether the metric requires the number of candidates for each ranking task

supported_rank_types

the supported rank types.

supports_weights

whether the metric supports weights

synonyms

synonyms for this metric

value_range

the value range

Methods Summary

__call__(ranks[, num_candidates, weights])

Evaluate the metric.

expected_value(num_candidates[, ...])

Compute expected metric value.

extra_repr()

Generate the extra repr, cf.

get_description()

Get the description.

get_link()

Get the link from the docdata.

get_range()

Get the math notation for the range of this metric.

get_sampled_values(num_candidates, num_samples)

Calculate the metric on sampled rank arrays.

iter_extra_repr()

Iterate over the components of the extra_repr().

numeric_expected_value(**kwargs)

Compute expected metric value by summation.

numeric_expected_value_with_ci(**kwargs)

Estimate expected value with confidence intervals.

numeric_variance(**kwargs)

Compute variance by summation.

numeric_variance_with_ci(**kwargs)

Estimate variance with confidence intervals.

std(num_candidates[, num_samples, weights])

Compute the standard deviation.

variance(num_candidates[, num_samples, weights])

Compute variance.

Attributes Documentation

binarize: ClassVar[bool] = False

whether the metric needs binarized scores

closed_expectation: ClassVar[bool] = False

whether there is a closed-form solution of the expectation

closed_variance: ClassVar[bool] = False

whether there is a closed-form solution of the variance

increasing: ClassVar[bool] = True

whether it is increasing, i.e., larger values are better

key

Return the key for use in metric result dictionaries.

Return type:

str

name: ClassVar[str] = 'Inverse Geometric Mean Rank (IGMR)'

The name of the metric

needs_candidates: ClassVar[bool] = False

whether the metric requires the number of candidates for each ranking task

supported_rank_types: ClassVar[Collection[Literal['optimistic', 'realistic', 'pessimistic']]] = ('optimistic', 'realistic', 'pessimistic')

the supported rank types. Most of the time equal to all rank types

supports_weights: ClassVar[bool] = True

whether the metric supports weights

synonyms: ClassVar[Collection[str]] = ('igmr',)

synonyms for this metric

value_range: ClassVar[ValueRange] = ValueRange(lower=0, lower_inclusive=False, upper=1, upper_inclusive=True)

the value range

Methods Documentation

__call__(ranks, num_candidates=None, weights=None)[source]

Evaluate the metric.

Parameters:
  • ranks (ndarray) – shape: s the individual ranks

  • num_candidates (Optional[ndarray]) – shape: s the number of candidates for each individual ranking task

  • weights (Optional[ndarray]) – shape: s the weights for the individual ranks

Return type:

float

expected_value(num_candidates, num_samples=None, weights=None, **kwargs)

Compute expected metric value.

The expectation is computed under the assumption that each individual rank follows a discrete uniform distribution \(\mathcal{U}\left(1, N_i\right)\), where \(N_i\) denotes the number of candidates for ranking task \(r_i\).

Parameters:
  • num_candidates (ndarray) – the number of candidates for each individual rank computation

  • num_samples (Optional[int]) – the number of samples to use for simulation, if no closed form expected value is implemented

  • weights (Optional[ndarray]) – shape: s the weights for the individual ranking tasks

  • kwargs – additional keyword-based parameters passed to get_sampled_values(), if no closed form solution is available

Return type:

float

Returns:

the expected value of this metric

Raises:

NoClosedFormError – raised if a closed form expectation has not been implemented and no number of samples are given

Note

Prefers analytical solution, if available, but falls back to numeric estimation via summation, cf. RankBasedMetric.numeric_expected_value().

extra_repr()

Generate the extra repr, cf. :meth`torch.nn.Module.extra_repr`.

Return type:

str

Returns:

the extra part of the repr()

classmethod get_description()

Get the description.

Return type:

str

Get the link from the docdata.

Return type:

str

classmethod get_range()

Get the math notation for the range of this metric.

Return type:

str

get_sampled_values(num_candidates, num_samples, weights=None, generator=None, memory_intense=True)

Calculate the metric on sampled rank arrays.

Parameters:
  • num_candidates (ndarray) – shape: s the number of candidates for each ranking task

  • num_samples (int) – the number of samples

  • weights (Optional[ndarray]) – shape: s the weights for the individual ranking tasks

  • generator (Optional[Generator]) – a random state for reproducibility

  • memory_intense (bool) – whether to use a more memory-intense, but more time-efficient variant

Return type:

ndarray

Returns:

shape: (num_samples,) the metric evaluated on num_samples sampled rank arrays

iter_extra_repr()

Iterate over the components of the extra_repr().

This method is typically overridden. A common pattern would be

def iter_extra_repr(self) -> Iterable[str]:
    yield from super().iter_extra_repr()
    yield "<key1>=<value1>"
    yield "<key2>=<value2>"
Return type:

Iterable[str]

Returns:

an iterable over individual components of the extra_repr()

numeric_expected_value(**kwargs)

Compute expected metric value by summation.

The expectation is computed under the assumption that each individual rank follows a discrete uniform distribution \(\mathcal{U}\left(1, N_i\right)\), where \(N_i\) denotes the number of candidates for ranking task \(r_i\).

Parameters:

kwargs – keyword-based parameters passed to get_sampled_values()

Return type:

float

Returns:

The estimated expected value of this metric

Warning

Depending on the metric, the estimate may not be very accurate and converge slowly, cf. https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_discrete.expect.html

numeric_expected_value_with_ci(**kwargs)

Estimate expected value with confidence intervals.

Return type:

ndarray

numeric_variance(**kwargs)

Compute variance by summation.

The variance is computed under the assumption that each individual rank follows a discrete uniform distribution \(\mathcal{U}\left(1, N_i\right)\), where \(N_i\) denotes the number of candidates for ranking task \(r_i\).

Parameters:

kwargs – keyword-based parameters passed to get_sampled_values()

Return type:

float

Returns:

The estimated variance of this metric

Warning

Depending on the metric, the estimate may not be very accurate and converge slowly, cf. https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_discrete.expect.html

numeric_variance_with_ci(**kwargs)

Estimate variance with confidence intervals.

Return type:

ndarray

std(num_candidates, num_samples=None, weights=None, **kwargs)

Compute the standard deviation.

Parameters:
  • num_candidates (ndarray) – the number of candidates for each individual rank computation

  • num_samples (Optional[int]) – the number of samples to use for simulation, if no closed form expected value is implemented

  • weights (Optional[ndarray]) – shape: s the weights for the individual ranking tasks

  • kwargs – additional keyword-based parameters passed to variance(),

Return type:

float

Returns:

The standard deviation (i.e. the square root of the variance) of this metric

For a detailed explanation, cf. RankBasedMetric.variance().

variance(num_candidates, num_samples=None, weights=None, **kwargs)

Compute variance.

The variance is computed under the assumption that each individual rank follows a discrete uniform distribution \(\mathcal{U}\left(1, N_i\right)\), where \(N_i\) denotes the number of candidates for ranking task \(r_i\).

Parameters:
  • num_candidates (ndarray) – the number of candidates for each individual rank computation

  • num_samples (Optional[int]) – the number of samples to use for simulation, if no closed form expected value is implemented

  • weights (Optional[ndarray]) – shape: s the weights for the individual ranking tasks

  • kwargs – additional keyword-based parameters passed to get_sampled_values(), if no closed form solution is available

Return type:

float

Returns:

The variance of this metric

Raises:

NoClosedFormError – Raised if a closed form variance has not been implemented and no number of samples are given

Note

Prefers analytical solution, if available, but falls back to numeric estimation via summation, cf. RankBasedMetric.numeric_variance().