TransE

class TransE(*, embedding_dim: int = 50, scoring_fct_norm: int = 1, power_norm: bool = False, entity_initializer: str | ~typing.Callable[[~torch.Tensor], ~torch.Tensor] | None = <function xavier_uniform_>, entity_constrainer: str | ~typing.Callable[[~torch.Tensor], ~torch.Tensor] | None = <function normalize>, relation_initializer: str | ~typing.Callable[[~torch.Tensor], ~torch.Tensor] | None = <pykeen.utils.compose object>, relation_constrainer: str | ~typing.Callable[[~torch.Tensor], ~torch.Tensor] | None = None, regularizer: str | ~pykeen.regularizers.Regularizer | type[~pykeen.regularizers.Regularizer] | None = None, regularizer_kwargs: ~collections.abc.Mapping[str, ~typing.Any] | None = None, **kwargs)[source]

Bases: ERModel[Tensor, Tensor, Tensor]

An implementation of TransE [bordes2013].

This model represents both entities and relations as \(d\)-dimensional vectors stored in an Embedding matrix. The representations are then passed to the TransEInteraction function to obtain scores.

Initialize TransE.

Parameters:
  • embedding_dim (int) – The entity embedding dimension \(d\). Is usually \(d \in [50, 300]\).

  • scoring_fct_norm (int) – The norm used with torch.linalg.vector_norm(). Typically is 1 or 2.

  • power_norm (bool) – Whether to use the p-th power of the \(L_p\) norm. It has the advantage of being differentiable around 0, and numerically more stable.

  • entity_initializer (str | Callable[[Tensor], Tensor] | None) – Entity initializer function. Defaults to pykeen.nn.init.xavier_uniform_().

  • entity_constrainer (str | Callable[[Tensor], Tensor] | None) – Entity constrainer function. Defaults to torch.nn.functional.normalize().

  • relation_initializer (str | Callable[[Tensor], Tensor] | None) – Relation initializer function. Defaults to pykeen.nn.init.xavier_uniform_norm_().

  • relation_constrainer (str | Callable[[Tensor], Tensor] | None) – Relation constrainer function. Defaults to none.

  • regularizer (str | Regularizer | type[Regularizer] | None) – a regularizer, or a hint thereof. Used for both, entity and relation representations; directly use ERModel if you need more flexibility

  • regularizer_kwargs (Mapping[str, Any] | None) – keyword-based parameters for the regularizer

  • kwargs – Remaining keyword arguments to forward to __init__()

See also

Attributes Summary

hpo_default

The default strategy for optimizing the model's hyper-parameters

Attributes Documentation

hpo_default: ClassVar[Mapping[str, Any]] = {'embedding_dim': {'high': 256, 'low': 16, 'q': 16, 'type': <class 'int'>}, 'scoring_fct_norm': {'high': 2, 'low': 1, 'type': <class 'int'>}}

The default strategy for optimizing the model’s hyper-parameters