Source code for pykeen.models.unimodal.ntn

# -*- coding: utf-8 -*-

"""Implementation of NTN."""

from typing import Optional

import torch
from torch import nn

from ..base import EntityEmbeddingModel
from ...losses import Loss
from ...regularizers import Regularizer
from ...triples import TriplesFactory
from ...utils import get_embedding_in_canonical_shape

__all__ = [
    'NTN',
]


[docs]class NTN(EntityEmbeddingModel): r"""An implementation of NTN from [socher2013]_. NTN uses a bilinear tensor layer instead of a standard linear neural network layer: .. math:: f(h,r,t) = \textbf{u}_{r}^{T} \cdot \tanh(\textbf{h} \mathfrak{W}_{r} \textbf{t} + \textbf{V}_r [\textbf{h};\textbf{t}] + \textbf{b}_r) where $\mathfrak{W}_r \in \mathbb{R}^{d \times d \times k}$ is the relation specific tensor, and the weight matrix $\textbf{V}_r \in \mathbb{R}^{k \times 2d}$, and the bias vector $\textbf{b}_r$ and the weight vector $\textbf{u}_r \in \mathbb{R}^k$ are the standard parameters of a neural network, which are also relation specific. The result of the tensor product $\textbf{h} \mathfrak{W}_{r} \textbf{t}$ is a vector $\textbf{x} \in \mathbb{R}^k$ where each entry $x_i$ is computed based on the slice $i$ of the tensor $\mathfrak{W}_{r}$: $\textbf{x}_i = \textbf{h}\mathfrak{W}_{r}^{i} \textbf{t}$. As indicated by the interaction model, NTN defines for each relation a separate neural network which makes the model very expressive, but at the same time computationally expensive. .. seealso:: - Original Implementation (Matlab): `<https://github.com/khurram18/NeuralTensorNetworks>`_ - TensorFlow: `<https://github.com/dddoss/tensorflow-socher-ntn>`_ - Keras: `<https://github.com/dapurv5/keras-neural-tensor-layer (Keras)>`_ """ #: The default strategy for optimizing the model's hyper-parameters hpo_default = dict( embedding_dim=dict(type=int, low=50, high=350, q=25), num_slices=dict(type=int, low=2, high=4), ) def __init__( self, triples_factory: TriplesFactory, embedding_dim: int = 100, automatic_memory_optimization: Optional[bool] = None, num_slices: int = 4, loss: Optional[Loss] = None, preferred_device: Optional[str] = None, random_seed: Optional[int] = None, non_linearity: Optional[nn.Module] = None, regularizer: Optional[Regularizer] = None, ) -> None: r"""Initialize NTN. :param embedding_dim: The entity embedding dimension $d$. Is usually $d \in [50, 350]$. :param num_slices: :param non_linearity: A non-linear activation function. Defaults to the hyperbolic tangent :class:`torch.nn.Tanh`. """ super().__init__( triples_factory=triples_factory, embedding_dim=embedding_dim, automatic_memory_optimization=automatic_memory_optimization, loss=loss, preferred_device=preferred_device, random_seed=random_seed, regularizer=regularizer, ) self.num_slices = num_slices self.w = nn.Parameter(data=torch.empty( triples_factory.num_relations, num_slices, embedding_dim, embedding_dim, device=self.device, ), requires_grad=True) self.vh = nn.Parameter(data=torch.empty( triples_factory.num_relations, num_slices, embedding_dim, device=self.device, ), requires_grad=True) self.vt = nn.Parameter(data=torch.empty( triples_factory.num_relations, num_slices, embedding_dim, device=self.device, ), requires_grad=True) self.b = nn.Parameter(data=torch.empty( triples_factory.num_relations, num_slices, device=self.device, ), requires_grad=True) self.u = nn.Parameter(data=torch.empty( triples_factory.num_relations, num_slices, device=self.device, ), requires_grad=True) if non_linearity is None: non_linearity = nn.Tanh() self.non_linearity = non_linearity # Finalize initialization self.reset_parameters_() def _reset_parameters_(self): # noqa: D102 self.entity_embeddings.reset_parameters() nn.init.normal_(self.w) nn.init.normal_(self.vh) nn.init.normal_(self.vt) nn.init.normal_(self.b) nn.init.normal_(self.u) def _score( self, h_ind: Optional[torch.LongTensor] = None, r_ind: Optional[torch.LongTensor] = None, t_ind: Optional[torch.LongTensor] = None, slice_size: int = None, ) -> torch.FloatTensor: """ Compute scores for NTN. :param h_ind: shape: (batch_size,) :param r_ind: shape: (batch_size,) :param t_ind: shape: (batch_size,) :return: shape: (batch_size, num_entities) """ assert r_ind is not None #: shape: (batch_size, num_entities, d) h_all = get_embedding_in_canonical_shape(embedding=self.entity_embeddings, ind=h_ind) t_all = get_embedding_in_canonical_shape(embedding=self.entity_embeddings, ind=t_ind) if slice_size is None: return self._interaction_function(h=h_all, t=t_all, r_ind=r_ind) if h_all.shape[1] > t_all.shape[1]: h_was_split = True split_tensor = torch.split(h_all, slice_size, dim=1) constant_tensor = t_all else: h_was_split = False split_tensor = torch.split(t_all, slice_size, dim=1) constant_tensor = h_all scores_arr = [] for split in split_tensor: if h_was_split: h = split t = constant_tensor else: h = constant_tensor t = split score = self._interaction_function(h=h, t=t, r_ind=r_ind) scores_arr.append(score) return torch.cat(scores_arr, dim=1) def _interaction_function( self, h: torch.FloatTensor, t: torch.FloatTensor, r_ind: Optional[torch.LongTensor] = None, ) -> torch.FloatTensor: #: Prepare h: (b, e, d) -> (b, e, 1, 1, d) h_for_w = h.unsqueeze(dim=-2).unsqueeze(dim=-2) #: Prepare t: (b, e, d) -> (b, e, 1, d, 1) t_for_w = t.unsqueeze(dim=-2).unsqueeze(dim=-1) #: Prepare w: (R, k, d, d) -> (b, k, d, d) -> (b, 1, k, d, d) w_r = self.w.index_select(dim=0, index=r_ind).unsqueeze(dim=1) # h.T @ W @ t, shape: (b, e, k, 1, 1) hwt = (h_for_w @ w_r @ t_for_w) #: reduce (b, e, k, 1, 1) -> (b, e, k) hwt = hwt.squeeze(dim=-1).squeeze(dim=-1) #: Prepare vh: (R, k, d) -> (b, k, d) -> (b, 1, k, d) vh_r = self.vh.index_select(dim=0, index=r_ind).unsqueeze(dim=1) #: Prepare h: (b, e, d) -> (b, e, d, 1) h_for_v = h.unsqueeze(dim=-1) # V_h @ h, shape: (b, e, k, 1) vhh = vh_r @ h_for_v #: reduce (b, e, k, 1) -> (b, e, k) vhh = vhh.squeeze(dim=-1) #: Prepare vt: (R, k, d) -> (b, k, d) -> (b, 1, k, d) vt_r = self.vt.index_select(dim=0, index=r_ind).unsqueeze(dim=1) #: Prepare t: (b, e, d) -> (b, e, d, 1) t_for_v = t.unsqueeze(dim=-1) # V_t @ t, shape: (b, e, k, 1) vtt = vt_r @ t_for_v #: reduce (b, e, k, 1) -> (b, e, k) vtt = vtt.squeeze(dim=-1) #: Prepare b: (R, k) -> (b, k) -> (b, 1, k) b = self.b.index_select(dim=0, index=r_ind).unsqueeze(dim=1) # a = f(h.T @ W @ t + Vh @ h + Vt @ t + b), shape: (b, e, k) pre_act = hwt + vhh + vtt + b act = self.non_linearity(pre_act) # prepare u: (R, k) -> (b, k) -> (b, 1, k, 1) u = self.u.index_select(dim=0, index=r_ind).unsqueeze(dim=1).unsqueeze(dim=-1) # prepare act: (b, e, k) -> (b, e, 1, k) act = act.unsqueeze(dim=-2) # compute score, shape: (b, e, 1, 1) score = act @ u # reduce score = score.squeeze(dim=-1).squeeze(dim=-1) return score
[docs] def score_hrt(self, hrt_batch: torch.LongTensor) -> torch.FloatTensor: # noqa: D102 return self._score(h_ind=hrt_batch[:, 0], r_ind=hrt_batch[:, 1], t_ind=hrt_batch[:, 2])
[docs] def score_t(self, hr_batch: torch.LongTensor, slice_size: int = None) -> torch.FloatTensor: # noqa: D102 return self._score(h_ind=hr_batch[:, 0], r_ind=hr_batch[:, 1], slice_size=slice_size)
[docs] def score_h(self, rt_batch: torch.LongTensor, slice_size: int = None) -> torch.FloatTensor: # noqa: D102 return self._score(r_ind=rt_batch[:, 0], t_ind=rt_batch[:, 1], slice_size=slice_size)