MultiTrainingCallback

class MultiTrainingCallback(callbacks: str | TrainingCallback | type[TrainingCallback] | None | Sequence[str | TrainingCallback | type[TrainingCallback] | None] = None, callbacks_kwargs: Mapping[str, Any] | None | Sequence[Mapping[str, Any] | None] = None)[source]

Bases: TrainingCallback

A wrapper for calling multiple training callbacks together.

Initialize the callback.

Note

the constructor allows “broadcasting” of callbacks, i.e., proving a single callback, but a list of callback kwargs. In this case, for each element of this list the given callback is instantiated.

Parameters:
  • callbacks (list[TrainingCallback]) – the callbacks

  • callbacks_kwargs (TrainingCallbackKwargsHint) – additional keyword-based parameters for instantiating the callbacks

Methods Summary

on_batch(epoch, batch, batch_loss, **kwargs)

Call for training batches.

post_batch(epoch, batch, **kwargs)

Call for training batches.

post_epoch(epoch, epoch_loss, **kwargs)

Call after epoch.

post_train(losses, **kwargs)

Call after training.

pre_batch(**kwargs)

Call before training batch.

pre_step(**kwargs)

Call before the optimizer's step.

register_callback(callback)

Register a callback.

register_training_loop(training_loop)

Register the training loop.

Methods Documentation

on_batch(epoch: int, batch, batch_loss: float, **kwargs: Any) None[source]

Call for training batches.

Parameters:
Return type:

None

post_batch(epoch: int, batch, **kwargs: Any) None[source]

Call for training batches.

Parameters:
Return type:

None

post_epoch(epoch: int, epoch_loss: float, **kwargs: Any) None[source]

Call after epoch.

Parameters:
Return type:

None

post_train(losses: list[float], **kwargs: Any) None[source]

Call after training.

Parameters:
Return type:

None

pre_batch(**kwargs: Any) None[source]

Call before training batch.

Parameters:

kwargs (Any)

Return type:

None

pre_step(**kwargs: Any) None[source]

Call before the optimizer’s step.

Parameters:

kwargs (Any)

Return type:

None

register_callback(callback: TrainingCallback) None[source]

Register a callback.

Parameters:

callback (TrainingCallback)

Return type:

None

register_training_loop(training_loop: TrainingLoop) None[source]

Register the training loop.

Parameters:

training_loop (TrainingLoop)

Return type:

None