References

Unimodal KGE Models.

balazevic2019

Balažević, et al. (2019) TuckER: Tensor Factorization for Knowledge Graph Completion. EMNLP’19

bordes2011

Bordes, A., et al. (2011). Learning Structured Embeddings of Knowledge Bases. AAAI. Vol. 6. No. 1.

bordes2013

Bordes, A., et al. (2013). Translating embeddings for modeling multi-relational data. NIPS.

bordes2014

Bordes, A., et al. (2014). A semantic matching energy function for learning with multi-relational data. Machine

dettmers2018

Dettmers, T., et al. (2018) Convolutional 2d knowledge graph embeddings. Thirty-Second AAAI Conference on Artificial Intelligence.

dong2014

Dong, X., et al. (2014) Knowledge vault: A web-scale approach to probabilistic knowledge fusion. ACM.

ebisu2018

Ebisu, T., et al. (2018) https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16227. AAAI’18.

feng2016

Feng, J. et al. (2016) Knowledge Graph Embedding by Flexible Translation. KR’16.

ji2015

Ji, G., et al. (2015). Knowledge graph embedding via dynamic mapping matrix. ACL.

kazemi2018

Kazemi, S.M. and Poole, D. (2018). SimplE Embedding for Link Prediction in Knowledge Graphs. NIPS’18

he2015

Shizhu, H., et al. (2017). Learning to Represent Knowledge Graphs with Gaussian Embedding. CIKM’17.

lin2015

Lin, Y., et al. (2015). Learning entity and relation embeddings for knowledge graph completion. AAAI. Vol. 15.

nguyen2018

Nguyen, D. Q., et al (2018) A Novel Embedding Model for Knowledge Base CompletionBased on Convolutional Neural Network. NAACL-HLT 2018

nickel2011

Nickel, M., et al. (2011) A Three-Way Model for Collective Learning on Multi-Relational Data. ICML. Vol. 11.

nickel2016

Nickel, M. et al. (2016) Holographic Embeddings of Knowledge Graphs. AAAI 2016.

schlichtkrull2018

Schlichtkrull, M., et al. (2018) Modeling relational data with graph convolutional networks. ESWC’18.

sharifzadeh2019

Sharifzadeh et al. (2019) Extension of ERMLP in PyKEEN.

shi2017

Shi, B., and Weninger, T. ProjE: Embedding Projection for Knowledge Graph Completion, AAAI 2017

sun2019

Sun, Z., et al. (2019) RotatE: Knowledge Graph Embeddings by relational rotation in complex space. ICLR 2019.

trouillon2016

Trouillon, T., et al. (2016) Complex embeddings for simple link prediction. International Conference on Machine Learning. 2016.

wang2014

Wang, Z., et al. (2014). Knowledge Graph Embedding by Translating on Hyperplanes. AAAI. Vol. 14.

yang2014

Yang, B., et al. (2014). Embedding Entities and Relations for Learning and Inference in Knowledge Bases. CoRR, abs/1412.6575.

socher2013

Socher, R., et al. (2013) Reasoning with neural tensor networks for knowledge base completion.. NIPS. 2013.

shi2019

Shi, X. et al. (2019). Modeling Multi-mapping Relations for Precise Cross-lingual Entity Alignment. EMNLP-IJCNLP 2019.

vashishth2020

Vashishth, S., et al. (2020). Composition-based multi-relational graph convolutional networks. arXiv, 1–15.

zhang2019

Zhang, Shuai, et al. (2019). Quaternion knowledge graph embeddings NeurIPS’19.

zhang2019b

Zhang, W., et al. (2019). Interaction Embeddings for Prediction and Explanation in Knowledge Graphs <https://doi.org/10.1145/3289600.3291014>. WSDM ‘19: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining.

Multimodal KGE Models.

kristiadi2018

Kristiadi, A.., et al. (2018) Incorporating literals into knowledge graph embeddings.. arXiv, 1802.00934.

ali2020a

Ali, M., et al. (2020). Bringing Light Into the Dark: A Large-scale Evaluation of Knowledge Graph Embedding Models Under a Unified Framework. arXiv, 2006.13365.

safavi2020

Safavi, T. & Koutra, D. (2020). CoDEx: A Comprehensive Knowledge Graph Completion Benchmark. arXiv, 2009.07810.

shi2017b

Shi, B., & Weninger, T. (2017). Open-World Knowledge Graph Completion. arXiv, 1957–1964.

santos2020

Santos, A., et al (2020). Clinical Knowledge Graph Integrates Proteomics Data into Clinical Decision-Making. bioRxiv, 2020.05.09.084897.

speer2017

Robyn Speer, Joshua Chin, and Catherine Havasi. (2017) ConceptNet 5.5: An Open Multilingual Graph of General Knowledge. In proceedings of AAAI 31.

breit2020

Breit, A., et al (2020). OpenBioLink: A benchmarking framework for large-scale biomedical link prediction, Bioinformatics

ilievski2020

Ilievski, F., Szekely, P., & Zhang, B. (2020). CSKG: The CommonSense Knowledge Graph. arxiv, 2012.11490.

himmelstein2017

Himmelstein, D. S., et al (2017). Systematic integration of biomedical knowledge prioritizes drugs for repurposing. ELife, 6.

xu2019

Xu, L (2019) A Comparison of Learned and Engineered Features in Network-Based Drug Repositioning. Master’s Thesis.

santurkar2018

Santurkar, S., et al. (2018). How does batch normalization help optimization?. Advances in Neural Information Processing Systems.

chao2020

Chao, L., He, J., Wang, T., & Chu, W. (2020). PairRE: Knowledge Graph Embeddings via Paired Relation Vectors.

ding2018

Ding, B., Wang, Q., Wang, B., & Guo, L. (2018). Improving Knowledge Graph Embedding Using Simple Constraints.

balazevic2019b

Balažević, I., Allen, C., & Hospedales, T. (2019). Multi-relational Poincaré Graph Embeddings.

fuhr2018

Fuhr, N. (2018). Some Common Mistakes In IR Evaluation, And How They Can Be Avoided. SIGIR Forum, 51(3), 32–41.

sakai2021

Sakai, T. (2021). On Fuhr’s Guideline for IR Evaluation. SIGIR Forum, 54(1), 1-8.

galkin2020

Galkin, M., et al. (2020). Message Passing for Hyper-Relational Knowledge Graphs. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 7346–7359.

sun2018

Sun, Z., et al. (2018). Bootstrapping Entity Alignment with Knowledge Graph Embedding. Proceedings of the 27th International Joint Conference on Artificial Intelligence, 4396–4402.

lin2018

Lin, T.-Y., et al. (2017). Focal Loss for Dense Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(2), 318–327.

mukhoti2020

Mukhoti, J., et al. (2020). Calibrating Deep Neural Networks using Focal Loss.