Unimodal KGE Models.


Balažević, et al. (2019) TuckER: Tensor Factorization for Knowledge Graph Completion. EMNLP’19


Bordes, A., et al. (2011). Learning Structured Embeddings of Knowledge Bases. AAAI. Vol. 6. No. 1.


Bordes, A., et al. (2013). Translating embeddings for modeling multi-relational data. NIPS.


Bordes, A., et al. (2014). A semantic matching energy function for learning with multi-relational data. Machine


Dettmers, T., et al. (2018) Convolutional 2d knowledge graph embeddings. Thirty-Second AAAI Conference on Artificial Intelligence.


Ebisu, T., et al. (2018) AAAI’18.


Feng, J. et al. (2016) Knowledge Graph Embedding by Flexible Translation. KR’16.


Ji, G., et al. (2015). Knowledge graph embedding via dynamic mapping matrix. ACL.


Kazemi, S.M. and Poole, D. (2018). SimplE Embedding for Link Prediction in Knowledge Graphs. NIPS’18


Shizhu, H., et al. (2017). Learning to Represent Knowledge Graphs with Gaussian Embedding. CIKM’17.


Lin, Y., et al. (2015). Learning entity and relation embeddings for knowledge graph completion. AAAI. Vol. 15.


Nickel, M., et al. (2011) A Three-Way Model for Collective Learning on Multi-Relational Data. ICML. Vol. 11.


Nickel, M. et al. (2016) Holographic Embeddings of Knowledge Graphs. AAAI 2016.


Schlichtkrull, M., et al. (2018) Modeling relational data with graph convolutional networks. ESWC’18.


Sharifzadeh et al. (2019) Extension of ERMLP in PyKEEN.


Shi, B., and Weninger, T. ProjE: Embedding Projection for Knowledge Graph Completion, AAAI 2017


Trouillon, T., et al. (2016) Complex embeddings for simple link prediction. International Conference on Machine Learning. 2016.


Wang, Z., et al. (2014). Knowledge Graph Embedding by Translating on Hyperplanes. AAAI. Vol. 14.


Yang, B., et al. (2014). Embedding Entities and Relations for Learning and Inference in Knowledge Bases. CoRR, abs/1412.6575.


Socher, R., et al. (2013) Reasoning with neural tensor networks for knowledge base completion.. NIPS. 2013.


Shi, X. et al. (2019). Modeling Multi-mapping Relations for Precise Cross-lingual Entity Alignment. EMNLP-IJCNLP 2019.


Vashishth, S., et al. (2020). Composition-based multi-relational graph convolutional networks. arXiv, 1–15.


Zhang, Shuai, et al. (2019). Quaternion knowledge graph embeddings NeurIPS’19.


Zhang, W., et al. (2019). Interaction Embeddings for Prediction and Explanation in Knowledge Graphs <>. WSDM ‘19: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining.


Abboud, R., et al. (2020). BoxE: A box embedding model for knowledge base completion. Advances in Neural Information Processing Systems, 2020-December(NeurIPS), 1–13.


Galkin, M., et al. (2021) NodePiece: Compositional and Parameter-Efficient Representations of Large Knowledge Graphs. arXiv, 2106.12144.


Zaheer, M., et al. (2017). Deep sets. Advances in Neural Information Processing Systems, 2017-December(ii), 3392–3402.


Lacroix, T., Usunier, N., & Obozinski, G. (2018). Canonical Tensor Decomposition for Knowledge Base Completion. arXiv, 1806.07297.


Hitchcock, F. L. The expression of a tensor or a polyadic as a sum of products. Studies in Applied Mathematics, 6 (1-4):164–189, 1927.

Multimodal KGE Models.


Kristiadi, A.., et al. (2018) Incorporating literals into knowledge graph embeddings.. arXiv, 1802.00934.


Safavi, T. & Koutra, D. (2020). CoDEx: A Comprehensive Knowledge Graph Completion Benchmark. arXiv, 2009.07810.


Shi, B., & Weninger, T. (2017). Open-World Knowledge Graph Completion. arXiv, 1957–1964.


Santos, A., et al (2020). Clinical Knowledge Graph Integrates Proteomics Data into Clinical Decision-Making. bioRxiv, 2020.05.09.084897.


Robyn Speer, Joshua Chin, and Catherine Havasi. (2017) ConceptNet 5.5: An Open Multilingual Graph of General Knowledge. In proceedings of AAAI 31.


Breit, A., et al (2020). OpenBioLink: A benchmarking framework for large-scale biomedical link prediction, Bioinformatics


Ilievski, F., Szekely, P., & Zhang, B. (2020). CSKG: The CommonSense Knowledge Graph. arxiv, 2012.11490.


Himmelstein, D. S., et al (2017). Systematic integration of biomedical knowledge prioritizes drugs for repurposing. ELife, 6.


Santurkar, S., et al. (2018). How does batch normalization help optimization?. Advances in Neural Information Processing Systems.


Chao, L., He, J., Wang, T., & Chu, W. (2020). PairRE: Knowledge Graph Embeddings via Paired Relation Vectors.


Ding, B., Wang, Q., Wang, B., & Guo, L. (2018). Improving Knowledge Graph Embedding Using Simple Constraints.


Balažević, I., Allen, C., & Hospedales, T. (2019). Multi-relational Poincaré Graph Embeddings.


Fuhr, N. (2018). Some Common Mistakes In IR Evaluation, And How They Can Be Avoided. SIGIR Forum, 51(3), 32–41.


Sakai, T. (2021). On Fuhr’s Guideline for IR Evaluation. SIGIR Forum, 54(1), 1-8.


Galkin, M., et al. (2020). Message Passing for Hyper-Relational Knowledge Graphs. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 7346–7359.


Sun, Z., et al. (2018). Bootstrapping Entity Alignment with Knowledge Graph Embedding. Proceedings of the 27th International Joint Conference on Artificial Intelligence, 4396–4402.


Lin, T.-Y., et al. (2017). Focal Loss for Dense Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(2), 318–327.


Mukhoti, J., et al. (2020). Calibrating Deep Neural Networks using Focal Loss.


Walsh, B., et al. (2020). BioKG: A Knowledge Graph for Relational Learning On Biological Data. Proceedings of the 29th ACM International Conference on Information & Knowledge Management, 3173–3180.


Nickel, M., et al. (2016). A Review of Relational Machine Learning for Knowledge Graphs. Proceedings of the IEEE, 104(1), 11–33.


Ruffinelli, D., Broscheit, S., & Gemulla, R. (2020). You CAN Teach an Old Dog New Tricks! On Training Knowledge Graph Embeddings. International Conference on Learning Representations.


Zhang, H., et al. (2017). Visual Translation Embedding Network for Visual Relation Detection. arXiv, 1702.08319.


Sharifzadeh, S., et al. (2019). Improving Visual Relation Detection using Depth Maps. arXiv, 1905.00966.


Gal, Y., & Ghahramani, Z. (2016). Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. ICML 2016.


Zhang, Y., et al. (2020). AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. ICDE 2020, 433–444.


Tucker, Ledyard R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika volume 31, 279–311.


Ali, M., et al (2021). Improving Inductive Link Prediction Using Hyper-relational Facts. ISWC 2021


Teru, K., et al (2020). Inductive Relation Prediction by Subgraph Reasoning. ICML 2020


Zheng, S., et al (2020). PharmKG: a dedicated knowledge graph benchmark for biomedical data mining. Briefings in Bioinformatics 2020


Yu, L., et al (2021). TripleRE: Knowledge Graph Embeddings via triple Relation Vectors. viXra, 2112.0095.


Chandak, P., et al (2022). Building a knowledge graph to enable precision medicine. bioRxiv, 2022.05.01.489928.


Thanapalasingam, T., et al (2021). Relational Graph Convolutional Networks: A Closer Look. arXiv, 2107.10015.


Y. Peng and J. Zhang (2020) LineaRE: Simple but Powerful Knowledge Graph Embedding for Link Prediction, 2020 IEEE International Conference on Data Mining (ICDM), pp. 422-431, doi: 10.1109/ICDM50108.2020.00051.


Königs, C., et al (2022) The heterogeneous pharmacological medical biochemical network PharMeBINet, Scientific Data, 9, 393.