Source code for pykeen.models.unimodal.conv_e

# -*- coding: utf-8 -*-

"""Implementation of ConvE."""

import logging
from typing import Any, ClassVar, Mapping, Optional, Type

import torch
from torch import nn

from ..nbase import ERModel
from ...constants import DEFAULT_DROPOUT_HPO_RANGE
from ...losses import BCEAfterSigmoidLoss, Loss
from ...nn.init import xavier_normal_
from ...nn.modules import ConvEInteraction
from ...triples import CoreTriplesFactory
from ...typing import Hint, Initializer

__all__ = [

logger = logging.getLogger(__name__)

[docs]class ConvE(ERModel): r"""An implementation of ConvE from [dettmers2018]_. ConvE is a CNN-based approach. For each triple $(h,r,t)$, the input to ConvE is a matrix $\mathbf{A} \in \mathbb{R}^{2 \times d}$ where the first row of $\mathbf{A}$ represents $\mathbf{h} \in \mathbb{R}^d$ and the second row represents $\mathbf{r} \in \mathbb{R}^d$. $\mathbf{A}$ is reshaped to a matrix $\mathbf{B} \in \mathbb{R}^{m \times n}$ where the first $m/2$ half rows represent $\mathbf{h}$ and the remaining $m/2$ half rows represent $\mathbf{r}$. In the convolution layer, a set of \textit{2-dimensional} convolutional filters $\Omega = \{\omega_i \ | \ \omega_i \in \mathbb{R}^{r \times c}\}$ are applied on $\mathbf{B}$ that capture interactions between $\mathbf{h}$ and $\mathbf{r}$. The resulting feature maps are reshaped and concatenated in order to create a feature vector $\mathbf{v} \in \mathbb{R}^{|\Omega|rc}$. In the next step, $\mathbf{v}$ is mapped into the entity space using a linear transformation $\mathbf{W} \in \mathbb{R}^{|\Omega|rc \times d}$, that is $\mathbf{e}_{h,r} = \mathbf{v}^{T} \mathbf{W}$. The score for the triple $(h,r,t) \in \mathbb{K}$ is then given by: .. math:: f(h,r,t) = \mathbf{e}_{h,r} \mathbf{t} Since the interaction model can be decomposed into $f(h,r,t) = \left\langle f'(\mathbf{h}, \mathbf{r}), \mathbf{t} \right\rangle$, the model is particularly designed to 1-N scoring, i.e. efficient computation of scores for $(h,r,t)$ for fixed $h,r$ and many different $t$. .. seealso:: - Official Implementation: The default setting uses batch normalization. Batch normalization normalizes the output of the activation functions, in order to ensure that the weights of the NN don't become imbalanced and to speed up training. However, batch normalization is not the only way to achieve more robust and effective training [santurkar2018]_. Therefore, we added the flag 'apply_batch_normalization' to turn batch normalization on/off (it's turned on as default). Example usage: >>> # Step 1: Get triples >>> from pykeen.datasets import Nations >>> dataset = Nations(create_inverse_triples=True) >>> # Step 2: Configure the model >>> from pykeen.models import ConvE >>> model = ConvE( ... embedding_dim = 200, ... input_channels = 1, ... output_channels = 32, ... embedding_height = 10, ... embedding_width = 20, ... kernel_height = 3, ... kernel_width = 3, ... input_dropout = 0.2, ... feature_map_dropout = 0.2, ... output_dropout = 0.3, ... ) >>> # Step 3: Configure the loop >>> from torch.optim import Adam >>> optimizer = Adam(params=model.get_grad_params()) >>> from import LCWATrainingLoop >>> training_loop = LCWATrainingLoop(model=model, optimizer=optimizer) >>> # Step 4: Train >>> losses = training_loop.train(num_epochs=5, batch_size=256) >>> # Step 5: Evaluate the model >>> from pykeen.evaluation import RankBasedEvaluator >>> evaluator = RankBasedEvaluator() >>> metric_result = evaluator.evaluate( ... model=model, ... mapped_triples=dataset.testing.mapped_triples, ..., ... batch_size=8192, ... ) --- citation: author: Dettmers year: 2018 link: github: TimDettmers/ConvE """ #: The default strategy for optimizing the model's hyper-parameters hpo_default: ClassVar[Mapping[str, Any]] = dict( output_channels=dict(type=int, low=4, high=6, scale="power_two"), input_dropout=DEFAULT_DROPOUT_HPO_RANGE, output_dropout=DEFAULT_DROPOUT_HPO_RANGE, feature_map_dropout=DEFAULT_DROPOUT_HPO_RANGE, ) #: The default loss function class loss_default: ClassVar[Type[Loss]] = BCEAfterSigmoidLoss #: The default parameters for the default loss function class loss_default_kwargs: ClassVar[Mapping[str, Any]] = {} #: If batch normalization is enabled, this is: num_features – C from an expected input of size (N,C,L) bn0: Optional[torch.nn.BatchNorm2d] #: If batch normalization is enabled, this is: num_features – C from an expected input of size (N,C,H,W) bn1: Optional[torch.nn.BatchNorm2d] bn2: Optional[torch.nn.BatchNorm1d] def __init__( self, triples_factory: CoreTriplesFactory, input_channels: Optional[int] = None, output_channels: int = 32, embedding_height: Optional[int] = None, embedding_width: Optional[int] = None, kernel_height: int = 3, kernel_width: int = 3, input_dropout: float = 0.2, output_dropout: float = 0.3, feature_map_dropout: float = 0.2, embedding_dim: int = 200, apply_batch_normalization: bool = True, entity_initializer: Hint[Initializer] = xavier_normal_, relation_initializer: Hint[Initializer] = xavier_normal_, **kwargs, ) -> None: """Initialize the model.""" # ConvE should be trained with inverse triples if not triples_factory.create_inverse_triples: logger.warning( "\nThe ConvE model should be trained with inverse triples.\n" "This can be done by defining the TriplesFactory class with the _create_inverse_triples_ parameter set " "to true.", ) super().__init__( triples_factory=triples_factory, interaction=ConvEInteraction, interaction_kwargs=dict( input_channels=input_channels, output_channels=output_channels, embedding_height=embedding_height, embedding_width=embedding_width, kernel_height=kernel_height, kernel_width=kernel_width, input_dropout=input_dropout, output_dropout=output_dropout, feature_map_dropout=feature_map_dropout, embedding_dim=embedding_dim, apply_batch_normalization=apply_batch_normalization, ), entity_representations_kwargs=[ # entity embedding dict( shape=embedding_dim, initializer=entity_initializer, ), # ConvE uses one bias for each entity dict( shape=tuple(), initializer=nn.init.zeros_, ), ], relation_representations_kwargs=dict( shape=embedding_dim, initializer=relation_initializer, ), **kwargs, )