Source code for pykeen.models.unimodal.trans_r

# -*- coding: utf-8 -*-

"""Implementation of TransR."""

from functools import partial
from typing import Any, ClassVar, Mapping

import torch
import torch.autograd
import torch.nn.init
from torch import linalg

from ..base import EntityRelationEmbeddingModel
from ...nn.emb import Embedding, EmbeddingSpecification
from ...nn.init import xavier_uniform_, xavier_uniform_norm_
from ...typing import Constrainer, Hint, Initializer
from ...utils import clamp_norm

__all__ = [

def _projection_initializer(
    x: torch.FloatTensor,
    num_relations: int,
    embedding_dim: int,
    relation_dim: int,
) -> torch.FloatTensor:
    """Initialize by Glorot."""
    return torch.nn.init.xavier_uniform_(x.view(num_relations, embedding_dim, relation_dim)).view(x.shape)

[docs]class TransR(EntityRelationEmbeddingModel): r"""An implementation of TransR from [lin2015]_. TransR is an extension of :class:`pykeen.models.TransH` that explicitly considers entities and relations as different objects and therefore represents them in different vector spaces. For a triple $(h,r,t) \in \mathbb{K}$, the entity embeddings, $\textbf{e}_h, \textbf{e}_t \in \mathbb{R}^d$, are first projected into the relation space by means of a relation-specific projection matrix $\textbf{M}_{r} \in \mathbb{R}^{k \times d}$. With relation embedding $\textbf{r}_r \in \mathbb{R}^k$, the interaction model is defined similarly to TransE with: .. math:: f(h,r,t) = -\|\textbf{M}_{r}\textbf{e}_h + \textbf{r}_r - \textbf{M}_{r}\textbf{e}_t\|_{p}^2 The following constraints are applied: * $\|\textbf{e}_h\|_2 \leq 1$ * $\|\textbf{r}_r\|_2 \leq 1$ * $\|\textbf{e}_t\|_2 \leq 1$ * $\|\textbf{M}_{r}\textbf{e}_h\|_2 \leq 1$ * $\|\textbf{M}_{r}\textbf{e}_t\|_2 \leq 1$ .. seealso:: - OpenKE `TensorFlow implementation of TransR <>`_ - OpenKE `PyTorch implementation of TransR <>`_ --- citation: author: Lin year: 2015 link: """ #: The default strategy for optimizing the model's hyper-parameters hpo_default: ClassVar[Mapping[str, Any]] = dict( embedding_dim=DEFAULT_EMBEDDING_HPO_EMBEDDING_DIM_RANGE, relation_dim=DEFAULT_EMBEDDING_HPO_EMBEDDING_DIM_RANGE, scoring_fct_norm=dict(type=int, low=1, high=2), ) def __init__( self, *, embedding_dim: int = 50, relation_dim: int = 30, scoring_fct_norm: int = 1, entity_initializer: Hint[Initializer] = xavier_uniform_, entity_constrainer: Hint[Constrainer] = clamp_norm, # type: ignore relation_initializer: Hint[Initializer] = xavier_uniform_norm_, relation_constrainer: Hint[Constrainer] = clamp_norm, # type: ignore **kwargs, ) -> None: """Initialize the model.""" super().__init__( entity_representations=EmbeddingSpecification( embedding_dim=embedding_dim, initializer=entity_initializer, constrainer=entity_constrainer, constrainer_kwargs=dict(maxnorm=1.0, p=2, dim=-1), ), relation_representations=EmbeddingSpecification( embedding_dim=relation_dim, initializer=relation_initializer, constrainer=relation_constrainer, constrainer_kwargs=dict(maxnorm=1.0, p=2, dim=-1), ), **kwargs, ) self.scoring_fct_norm = scoring_fct_norm # TODO: Initialize from TransE # embeddings self.relation_projections = Embedding.init_with_device( num_embeddings=self.num_relations, embedding_dim=relation_dim * embedding_dim, device=self.device, initializer=partial( _projection_initializer, num_relations=self.num_relations, embedding_dim=self.embedding_dim, relation_dim=self.relation_dim, ), ) def _reset_parameters_(self): # noqa: D102 super()._reset_parameters_() self.relation_projections.reset_parameters()
[docs] @staticmethod def interaction_function( h: torch.FloatTensor, r: torch.FloatTensor, t: torch.FloatTensor, m_r: torch.FloatTensor, ) -> torch.FloatTensor: """Evaluate the interaction function for given embeddings. The embeddings have to be in a broadcastable shape. :param h: shape: (batch_size, num_entities, d_e) Head embeddings. :param r: shape: (batch_size, num_entities, d_r) Relation embeddings. :param t: shape: (batch_size, num_entities, d_e) Tail embeddings. :param m_r: shape: (batch_size, num_entities, d_e, d_r) The relation specific linear transformations. :return: shape: (batch_size, num_entities) The scores. """ # project to relation specific subspace, shape: (b, e, d_r) h_bot = h @ m_r t_bot = t @ m_r # ensure constraints h_bot = clamp_norm(h_bot, p=2, dim=-1, maxnorm=1.0) t_bot = clamp_norm(t_bot, p=2, dim=-1, maxnorm=1.0) # evaluate score function, shape: (b, e) return -linalg.vector_norm(h_bot + r - t_bot, dim=-1) ** 2
[docs] def score_hrt(self, hrt_batch: torch.LongTensor) -> torch.FloatTensor: # noqa: D102 # Get embeddings h = self.entity_embeddings(indices=hrt_batch[:, 0]).unsqueeze(dim=1) r = self.relation_embeddings(indices=hrt_batch[:, 1]).unsqueeze(dim=1) t = self.entity_embeddings(indices=hrt_batch[:, 2]).unsqueeze(dim=1) m_r = self.relation_projections(indices=hrt_batch[:, 1]).view(-1, self.embedding_dim, self.relation_dim) return self.interaction_function(h=h, r=r, t=t, m_r=m_r).view(-1, 1)
[docs] def score_t(self, hr_batch: torch.LongTensor) -> torch.FloatTensor: # noqa: D102 # Get embeddings h = self.entity_embeddings(indices=hr_batch[:, 0]).unsqueeze(dim=1) r = self.relation_embeddings(indices=hr_batch[:, 1]).unsqueeze(dim=1) t = self.entity_embeddings(indices=None).unsqueeze(dim=0) m_r = self.relation_projections(indices=hr_batch[:, 1]).view(-1, self.embedding_dim, self.relation_dim) return self.interaction_function(h=h, r=r, t=t, m_r=m_r)
[docs] def score_h(self, rt_batch: torch.LongTensor) -> torch.FloatTensor: # noqa: D102 # Get embeddings h = self.entity_embeddings(indices=None).unsqueeze(dim=0) r = self.relation_embeddings(indices=rt_batch[:, 0]).unsqueeze(dim=1) t = self.entity_embeddings(indices=rt_batch[:, 1]).unsqueeze(dim=1) m_r = self.relation_projections(indices=rt_batch[:, 0]).view(-1, self.embedding_dim, self.relation_dim) return self.interaction_function(h=h, r=r, t=t, m_r=m_r)