Source code for pykeen.models.unimodal.unstructured_model

"""Implementation of UM."""

from collections.abc import Mapping
from typing import Any, ClassVar

from ..nbase import ERModel
from ...constants import DEFAULT_EMBEDDING_HPO_EMBEDDING_DIM_RANGE
from ...nn.init import xavier_normal_
from ...nn.modules import UMInteraction
from ...typing import FloatTensor, Hint, Initializer

__all__ = [
    "UM",
]


[docs] class UM(ERModel[FloatTensor, tuple[()], FloatTensor]): r"""An implementation of the Unstructured Model (UM) published by [bordes2014]_. This model represents entities as $d$-dimensional vectors stored in :class:`~pykeen.nn.representation.Embedding`. It does not have any relation representations. The :class:`~pykeen.nn.modules.UMInteraction` is used to calculate scores. --- name: Unstructured Model citation: author: Bordes year: 2014 link: https://link.springer.com/content/pdf/10.1007%2Fs10994-013-5363-6.pdf """ #: The default strategy for optimizing the model's hyper-parameters hpo_default: ClassVar[Mapping[str, Any]] = dict( embedding_dim=DEFAULT_EMBEDDING_HPO_EMBEDDING_DIM_RANGE, scoring_fct_norm=dict(type=int, low=1, high=2), ) def __init__( self, *, embedding_dim: int = 50, scoring_fct_norm: int = 1, power_norm: bool = False, entity_initializer: Hint[Initializer] = xavier_normal_, **kwargs, ) -> None: r"""Initialize UM. :param embedding_dim: The entity embedding dimension $d$. Is usually $d \in [50, 300]$. :param scoring_fct_norm: The norm used with :func:`torch.linalg.vector_norm`. Typically is 1 or 2. :param power_norm: Whether to use the p-th power of the $L_p$ norm. It has the advantage of being differentiable around 0, and numerically more stable. :param entity_initializer: The initializer for the entity embeddings. Defaults to :func:`pykeen.nn.init.xavier_normal`. :param kwargs: Remaining keyword arguments passed through to :class:`~pykeen.models.ERModel`. """ super().__init__( interaction=UMInteraction, interaction_kwargs=dict(p=scoring_fct_norm, power_norm=power_norm), entity_representations_kwargs=dict( shape=embedding_dim, initializer=entity_initializer, ), relation_representations=[], **kwargs, )