PretrainedInitializer
- class PretrainedInitializer(tensor: Tensor)[source]
Bases:
object
Initialize tensor with pretrained weights.
Example usage:
import torch from pykeen.pipeline import pipeline from pykeen.nn.init import PretrainedInitializer # this is usually loaded from somewhere else # the shape must match, as well as the entity-to-id mapping pretrained_embedding_tensor = torch.rand(14, 128) result = pipeline( dataset="nations", model="transe", model_kwargs=dict( embedding_dim=pretrained_embedding_tensor.shape[-1], entity_initializer=PretrainedInitializer(tensor=pretrained_embedding_tensor), ), )
Initialize the initializer.
- Parameters:
tensor (Tensor) – the tensor of pretrained embeddings.
Methods Summary
__call__
(x)Initialize the tensor with the given tensor.
as_embedding
(**kwargs)Get a static embedding from this pre-trained initializer.
Methods Documentation
- as_embedding(**kwargs: Any)[source]
Get a static embedding from this pre-trained initializer.
- Parameters:
kwargs (Any) – Keyword arguments to pass to
pykeen.nn.representation.Embedding
- Returns:
An embedding
- Return type: