MetisAnchorTokenizer
- class MetisAnchorTokenizer(num_partitions: int = 2, device: str | device | None = None, **kwargs)[source]
Bases:
AnchorTokenizer
An anchor tokenizer, which first partitions the graph using METIS.
We use the binding by
torch_sparse
. The METIS graph partitioning algorithm is described here: http://glaros.dtc.umn.edu/gkhome/metis/metis/overviewInitialize the tokenizer.
- Parameters:
num_partitions (int) – the number of partitions obtained through Metis.
device (str | device | None) – the device to use for tokenization
kwargs – additional keyword-based parameters passed to
AnchorTokenizer.__init__()
. note that there will be one anchor tokenizer per partition, i.e., the vocabulary size will grow respectively.
Methods Summary
__call__
(mapped_triples, num_tokens, ...)Tokenize the entities contained given the triples.
Methods Documentation
- __call__(mapped_triples: Tensor, num_tokens: int, num_entities: int, num_relations: int) tuple[int, Tensor] [source]
Tokenize the entities contained given the triples.
- Parameters:
- Returns:
shape: (num_entities, num_tokens), -1 <= res < vocabulary_size the selected relation IDs for each entity. -1 is used as a padding token.
- Return type: