SimpleMessagePassingRepresentation
- class SimpleMessagePassingRepresentation(triples_factory: CoreTriplesFactory, layers: str | None | type[None] | Sequence[str | None | type[None]], layers_kwargs: Mapping[str, Any] | None | Sequence[Mapping[str, Any] | None] = None, base: str | Representation | type[Representation] | None = None, base_kwargs: Mapping[str, Any] | None = None, max_id: int | None = None, shape: int | Sequence[int] | None = None, activations: str | Module | type[Module] | None | Sequence[str | Module | type[Module] | None] = None, activations_kwargs: Mapping[str, Any] | None | Sequence[Mapping[str, Any] | None] = None, restrict_k_hop: bool = False, **kwargs)[source]
Bases:
MessagePassingRepresentation
A representation with message passing not making use of the relation type.
By only using the connectivity information, but not the relation type information, this module can utilize message passing layers defined on uni-relational graphs, which are the majority of available layers from the PyTorch Geometric library.
Here, we create a two-layer
torch_geometric.nn.conv.GCNConv
on top of anEmbedding
."""An example for using simple message passing, ignoring edge types. We create a two-layer GCN on top of an Embedding. """ from pykeen.datasets import get_dataset from pykeen.models import ERModel from pykeen.nn.pyg import SimpleMessagePassingRepresentation from pykeen.pipeline import pipeline embedding_dim = 64 dataset = get_dataset(dataset="nations") entities = SimpleMessagePassingRepresentation( triples_factory=dataset.training, base_kwargs=dict(shape=embedding_dim), layers=["gcn"] * 2, layers_kwargs=dict(in_channels=embedding_dim, out_channels=embedding_dim), ) result = pipeline( dataset=dataset, # compose a model with distmult interaction function model=ERModel( triples_factory=dataset.training, entity_representations=entities, relation_representations_kwargs=dict(embedding_dim=embedding_dim), # use embedding with same dimension interaction="DistMult", ), )
Initialize the representation.
- Parameters:
triples_factory (CoreTriplesFactory) – The factory comprising the training triples used for message passing.
layers (Sequence[None]) – The message passing layer(s) or hints thereof.
layers_kwargs (OneOrManyOptionalKwargs) – Additional keyword-based parameters passed to the layers upon instantiation.
base (HintOrType[Representation]) – The base representations for entities, or a hint thereof.
base_kwargs (OptionalKwargs) – Additional keyword-based parameters passed to the base representations upon instantiation.
shape (tuple[int, ...]) – The output shape. Defaults to the base representation shape. Has to match to output shape of the last message passing layer.
max_id (int) – The number of representations. If provided, has to match the base representation’s max_id.
activations (OneOrManyHintOrType[nn.Module]) – The activation(s), or hints thereof.
activations_kwargs (OneOrManyOptionalKwargs) – Additional keyword-based parameters passed to the activations upon instantiation
restrict_k_hop (bool) – Whether to restrict the message passing only to the k-hop neighborhood, when only some indices are requested. This utilizes
torch_geometric.utils.k_hop_subgraph()
.kwargs – Additional keyword-based parameters passed to
Representation
.
- Raises:
ImportError – If PyTorch Geometric is not installed.
ValueError – If the number of activations and message passing layers do not match (after input normalization).
Note
3 resolvers are used in this function.
The parameter pair
(layers, layers_kwargs)
is used forpykeen.nn.pyg.layer_resolver
The parameter pair
(base, base_kwargs)
is used forpykeen.nn.representation_resolver
The parameter pair
(activations, activations_kwargs)
is used forclass_resolver.contrib.torch.activation_resolver
An explanation of resolvers and how to use them is given in https://class-resolver.readthedocs.io/en/latest/.
Methods Summary
pass_messages
(x, edge_index[, edge_mask])Perform the message passing steps.
Methods Documentation