SimpleMessagePassingRepresentation
- class SimpleMessagePassingRepresentation(triples_factory: CoreTriplesFactory, layers: str | None | type[None] | Sequence[str | None | type[None]], layers_kwargs: Mapping[str, Any] | None | Sequence[Mapping[str, Any] | None] = None, base: str | Representation | type[Representation] | None = None, base_kwargs: Mapping[str, Any] | None = None, max_id: int | None = None, shape: int | Sequence[int] | None = None, activations: str | Module | type[Module] | None | Sequence[str | Module | type[Module] | None] = None, activations_kwargs: Mapping[str, Any] | None | Sequence[Mapping[str, Any] | None] = None, restrict_k_hop: bool = False, **kwargs)[source]
Bases:
MessagePassingRepresentation
A representation with message passing not making use of the relation type.
By only using the connectivity information, but not the relation type information, this module can utilize message passing layers defined on uni-relational graphs, which are the majority of available layers from the PyTorch Geometric library.
Here, we create a two-layer
torch_geometric.nn.conv.GCNConv
on top of anpykeen.nn.representation.Embedding
:from pykeen.datasets import get_dataset embedding_dim = 64 dataset = get_dataset(dataset="nations") r = SimpleMessagePassingRepresentation( triples_factory=dataset.training, base_kwargs=dict(shape=embedding_dim), layers=["gcn"] * 2, layers_kwargs=dict(in_channels=embedding_dim, out_channels=embedding_dim), )
Initialize the representation.
- Parameters:
triples_factory (CoreTriplesFactory) – the factory comprising the training triples used for message passing
layers (Sequence[None]) – the message passing layer(s) or hints thereof
layers_kwargs (Mapping[str, Any] | None | Sequence[Mapping[str, Any] | None]) – additional keyword-based parameters passed to the layers upon instantiation
base (str | Representation | type[Representation] | None) – the base representations for entities, or a hint thereof
base_kwargs (Mapping[str, Any] | None) – additional keyword-based parameters passed to the base representations upon instantiation
shape (tuple[int, ...]) – the output shape. Defaults to the base representation shape. Has to match to output shape of the last message passing layer.
max_id (int) – the number of representations. If provided, has to match the base representation’s max_id
activations (str | Module | type[Module] | None | Sequence[str | Module | type[Module] | None]) – the activation(s), or hints thereof
activations_kwargs (Mapping[str, Any] | None | Sequence[Mapping[str, Any] | None]) – additional keyword-based parameters passed to the activations upon instantiation
restrict_k_hop (bool) – whether to restrict the message passing only to the k-hop neighborhood, when only some indices are requested. This utilizes
torch_geometric.utils.k_hop_subgraph()
.kwargs – additional keyword-based parameters passed to
Representation.__init__()
- Raises:
ImportError – if PyTorch Geometric is not installed
ValueError – if the number of activations and message passing layers do not match (after input normalization)
Methods Summary
pass_messages
(x, edge_index[, edge_mask])Perform the message passing steps.
Methods Documentation