LCWALitModule
- class LCWALitModule(dataset: str | Dataset | type[Dataset] | None = 'nations', dataset_kwargs: Mapping[str, Any] | None = None, mode: Literal['training', 'validation', 'testing'] | None = None, model: str | Model | type[Model] | None = 'distmult', model_kwargs: Mapping[str, Any] | None = None, batch_size: int = 32, learning_rate: float = 0.001, label_smoothing: float = 0.0, optimizer: str | Optimizer | type[Optimizer] | None = None, optimizer_kwargs: Mapping[str, Any] | None = None)[source]
Bases:
LitModule
A PyTorch Lightning module for training a model with LCWA training loop.
Create the lightning module.
- Parameters:
dataset (str | Dataset | type[Dataset] | None) – the dataset, or a hint thereof
dataset_kwargs (Mapping[str, Any] | None) – additional keyword-based parameters passed to the dataset
mode (Literal['training', 'validation', 'testing'] | None) – the inductive mode; defaults to transductive training
model (str | Model | type[Model] | None) – the model, or a hint thereof
model_kwargs (Mapping[str, Any] | None) – additional keyword-based parameters passed to the model
batch_size (int) – the training batch size
learning_rate (float) – the learning rate
label_smoothing (float) – the label smoothing
optimizer (str | Optimizer | type[Optimizer] | None) – the optimizer, or a hint thereof
optimizer_kwargs (Mapping[str, Any] | None) – additional keyword-based parameters passed to the optimizer. should not contain lr, or params.