Source code for pykeen.nn.modules

"""Stateful interaction functions."""

from __future__ import annotations

import dataclasses
import itertools as itt
import logging
import math
from abc import ABC, abstractmethod
from collections import Counter
from collections.abc import Collection, Iterable, Mapping, Sequence
from operator import itemgetter
from typing import Any, ClassVar, Generic, Optional, Union, cast, overload

import more_itertools
import numpy
import torch
from class_resolver import (
    ClassResolver,
    Hint,
    LookupOrType,
    OptionalKwargs,
    ResolverKey,
    update_docstring_with_resolver_keys,
)
from class_resolver.contrib.torch import activation_resolver
from docdata import parse_docdata
from torch import nn
from torch.nn.init import xavier_normal_
from typing_extensions import Self

from . import init, quaternion
from .sim import KG2ESimilarity, kg2e_similarity_resolver
from .utils import apply_optional_bn
from ..metrics.utils import ValueRange
from ..typing import (
    FloatTensor,
    GaussianDistribution,
    HeadRepresentation,
    HintOrType,
    Initializer,
    RelationRepresentation,
    Representation,
    Sign,
    TailRepresentation,
)
from ..utils import (
    add_cudnn_error_hint,
    at_least_eps,
    batched_dot,
    circular_correlation,
    clamp_norm,
    einsum,
    ensure_complex,
    ensure_tuple,
    estimate_cost_of_sequence,
    make_ones_like,
    negative_norm,
    negative_norm_of_sum,
    project_entity,
    tensor_product,
    tensor_sum,
    unpack_singletons,
)

# TODO: split file into multiple smaller ones?

__all__ = [
    "interaction_resolver",
    # Base Classes
    "Interaction",
    "NormBasedInteraction",
    # Adapter classes
    "MonotonicAffineTransformationInteraction",
    "ClampedInteraction",
    "DirectionAverageInteraction",
    # Concrete Classes
    "AutoSFInteraction",
    "BoxEInteraction",
    "ComplExInteraction",
    "ConvEInteraction",
    "ConvKBInteraction",
    "CPInteraction",
    "CrossEInteraction",
    "DistMAInteraction",
    "DistMultInteraction",
    "ERMLPEInteraction",
    "ERMLPInteraction",
    "HolEInteraction",
    "KG2EInteraction",
    "LineaREInteraction",
    "MultiLinearTuckerInteraction",
    "MuREInteraction",
    "NTNInteraction",
    "PairREInteraction",
    "ProjEInteraction",
    "QuatEInteraction",
    "RESCALInteraction",
    "RotatEInteraction",
    "SEInteraction",
    "SimplEInteraction",
    "TorusEInteraction",
    "TransDInteraction",
    "TransEInteraction",
    "TransFInteraction",
    "TransformerInteraction",
    "TransHInteraction",
    "TransRInteraction",
    "TripleREInteraction",
    "TuckERInteraction",
    "UMInteraction",
]

logger = logging.getLogger(__name__)


def parallel_slice_batches(
    *representations: Representation,
    split_size: int,
    dim: int,
) -> Iterable[Sequence[Representation]]:
    """
    Slice representations along the given dimension.

    :param representations:
        the representations to slice
    :param split_size:
        the slice size
    :param dim:
        the dimension along which to slice

    :yields: batches of sliced representations
    """
    # normalize input
    rs: Sequence[Sequence[FloatTensor]] = ensure_tuple(*representations)
    # get number of head/relation/tail representations
    length = list(map(len, rs))
    splits = numpy.cumsum([0] + length)
    # flatten list
    rsl: Sequence[FloatTensor] = sum(map(list, rs), [])
    # split tensors
    parts = [r.split(split_size, dim=dim) for r in rsl]
    # broadcasting
    n_parts = max(map(len, parts))
    parts = [r_parts if len(r_parts) == n_parts else r_parts * n_parts for r_parts in parts]
    # yield batches
    for batch in zip(*parts):
        # complex typing
        yield unpack_singletons(*(batch[start:stop] for start, stop in zip(splits, splits[1:])))  # type: ignore


# docstr-coverage:excused `overload`
@overload
def parallel_unsqueeze(x: Sequence[FloatTensor], dim: int) -> Sequence[FloatTensor]: ...


# docstr-coverage:excused `overload`
@overload
def parallel_unsqueeze(x: FloatTensor, dim: int) -> FloatTensor: ...


def parallel_unsqueeze(x: FloatTensor | Sequence[FloatTensor], dim: int) -> FloatTensor | Sequence[FloatTensor]:
    """Unsqueeze all representations along the given dimension."""
    if not isinstance(x, Sequence):
        return x.unsqueeze(dim=dim)
    return cast(Sequence[FloatTensor], [xx.unsqueeze(dim=dim) for xx in x])


[docs] class Interaction(nn.Module, Generic[HeadRepresentation, RelationRepresentation, TailRepresentation], ABC): """Base class for interaction functions.""" #: The symbolic shapes for entity representations entity_shape: Sequence[str] = ("d",) #: The symbolic shapes for relation representations relation_shape: Sequence[str] = ("d",) # if the interaction function's head parameter should only receive a subset of entity representations _head_indices: Sequence[int] | None = None # if the interaction function's tail parameter should only receive a subset of entity representations _tail_indices: Sequence[int] | None = None # TODO: does not seem to be used #: the interaction's value range (for unrestricted input) value_range: ClassVar[ValueRange] = ValueRange() # TODO: annotate modelling capabilities? cf., e.g., https://arxiv.org/abs/1902.10197, Table 2 # TODO: annotate properties, e.g., symmetry, and use them for testing? # TODO: annotate complexity? #: whether the interaction is defined on complex input is_complex: ClassVar[bool] = False @property def head_shape(self) -> Sequence[str]: """Return the symbolic shape for head entity representations.""" if self._head_indices is None: return self.entity_shape return [self.entity_shape[i] for i in self._head_indices] @property def tail_shape(self) -> Sequence[str]: """Return the symbolic shape for tail entity representations.""" if self._tail_indices is None: return self.entity_shape return [self.entity_shape[i] for i in self._tail_indices] @property def head_indices(self) -> Sequence[int]: """Return the entity representation indices used for the head representations.""" if self._head_indices is None: return range(len(self.entity_shape)) return self._head_indices @property def tail_indices(self) -> Sequence[int]: """Return the entity representation indices used for the tail representations.""" if self._tail_indices is None: return range(len(self.tail_shape)) return self._tail_indices @property def dimensions(self) -> set[str]: """Get all the relevant dimension keys. This draws from :data:`Interaction.entity_shape`, and :data:`Interaction.relation_shape`. :returns: a set of strings representing the dimension keys. """ return set(itt.chain(self.entity_shape, self.relation_shape))
[docs] @abstractmethod def forward( self, h: HeadRepresentation, r: RelationRepresentation, t: TailRepresentation, ) -> FloatTensor: """Compute broadcasted triple scores given broadcasted representations for head, relation and tails. In general, each interaction function (class) expects a certain format for each of head, relation and tail representations. This format is composed of the *number* and the shape of the representations. Many simple interaction functions such as :class:`~pykeen.nn.modules.TransEInteraction` operate on a single representation, however there are also interactions such as :class:`~pykeen.nn.modules.TransDInteraction`, which requires two representations for each slot, or :class:`~pykeen.nn.modules.PairREInteraction`, which requires two relation representations, but only a single representation for head and tail entity respectively. Each individual representation has a *shape*. This can be a simple $d$-dimensional vector, but also comprise matrices, or even high-order tensors. This method supports the general batched calculation, i.e., each of the representations can have a preceding batch dimensions. Those batch dimensions do not necessarily need to be exactly the same, but they need to be broadcastable. A good explanation of broadcasting rules can be found in `NumPy's documentation <https://numpy.org/doc/stable/user/basics.broadcasting.html>`_. .. seealso:: - :ref:`representations` for an overview about different ways how to obtain individual representations. :param h: shape: ``(*batch_dims, *dims)`` The head representations. :param r: shape: ``(*batch_dims, *dims)`` The relation representations. :param t: shape: ``(*batch_dims, *dims)`` The tail representations. :return: shape: batch_dims The scores. """
[docs] def score( self, h: HeadRepresentation, r: RelationRepresentation, t: TailRepresentation, slice_size: int | None = None, slice_dim: int = 1, ) -> FloatTensor: """Compute broadcasted triple scores with optional slicing. .. note :: At most one of the slice sizes may be not None. .. todo:: we could change that to slicing along multiple dimensions, if necessary :param h: shape: (`*batch_dims`, `*dims`) The head representations. :param r: shape: (`*batch_dims`, `*dims`) The relation representations. :param t: shape: (`*batch_dims`, `*dims`) The tail representations. :param slice_size: The slice size. :param slice_dim: The dimension along which to slice. From {0, ..., len(batch_dims)} :return: shape: batch_dims The scores. """ if slice_size is None: return self(h=h, r=r, t=t) return torch.cat( [ self(h=h_batch, r=r_batch, t=t_batch) for h_batch, r_batch, t_batch in parallel_slice_batches(h, r, t, split_size=slice_size, dim=slice_dim) ], dim=slice_dim, )
[docs] def score_hrt( self, h: HeadRepresentation, r: RelationRepresentation, t: TailRepresentation, ) -> FloatTensor: """Score a batch of triples. :param h: shape: (batch_size, d_e) The head representations. :param r: shape: (batch_size, d_r) The relation representations. :param t: shape: (batch_size, d_e) The tail representations. :return: shape: (batch_size, 1) The scores. """ return self.score(h=h, r=r, t=t).unsqueeze(dim=-1)
[docs] def score_h( self, all_entities: HeadRepresentation, r: RelationRepresentation, t: TailRepresentation, slice_size: int | None = None, ) -> FloatTensor: """Score all head entities. :param all_entities: shape: (num_entities, d_e) The head representations. :param r: shape: (batch_size, d_r) The relation representations. :param t: shape: (batch_size, d_e) The tail representations. :param slice_size: The slice size. :return: shape: (batch_size, num_entities) The scores. """ return self.score( h=parallel_unsqueeze(all_entities, dim=0), r=parallel_unsqueeze(r, dim=1), t=parallel_unsqueeze(t, dim=1), slice_size=slice_size, )
[docs] def score_r( self, h: HeadRepresentation, all_relations: RelationRepresentation, t: TailRepresentation, slice_size: int | None = None, ) -> FloatTensor: """Score all relations. :param h: shape: (batch_size, d_e) The head representations. :param all_relations: shape: (num_relations, d_r) The relation representations. :param t: shape: (batch_size, d_e) The tail representations. :param slice_size: The slice size. :return: shape: (batch_size, num_entities) The scores. """ return self.score( h=parallel_unsqueeze(h, dim=1), r=parallel_unsqueeze(all_relations, dim=0), t=parallel_unsqueeze(t, dim=1), slice_size=slice_size, )
[docs] def score_t( self, h: HeadRepresentation, r: RelationRepresentation, all_entities: TailRepresentation, slice_size: int | None = None, ) -> FloatTensor: """Score all tail entities. :param h: shape: (batch_size, d_e) The head representations. :param r: shape: (batch_size, d_r) The relation representations. :param all_entities: shape: (num_entities, d_e) The tail representations. :param slice_size: The slice size. :return: shape: (batch_size, num_entities) The scores. """ return self.score( h=parallel_unsqueeze(h, dim=1), r=parallel_unsqueeze(r, dim=1), t=parallel_unsqueeze(all_entities, dim=0), slice_size=slice_size, )
[docs] def reset_parameters(self): """Reset parameters the interaction function may have.""" for mod in self.modules(): if mod is self: continue if hasattr(mod, "reset_parameters"): mod.reset_parameters()
[docs] class NormBasedInteraction(Interaction, Generic[HeadRepresentation, RelationRepresentation, TailRepresentation], ABC): """Norm-based interactions use a (powered) $p$-norm in their scoring function.""" def __init__(self, p: int, power_norm: bool = False): """Initialize the norm-based interaction function. :param p: The norm used with :func:`torch.linalg.vector_norm`. Typically is 1 or 2. :param power_norm: Whether to use the p-th power of the $L_p$ norm. It has the advantage of being differentiable around 0, and numerically more stable. """ super().__init__() self.p = p self.power_norm = power_norm
[docs] @parse_docdata class TransEInteraction(NormBasedInteraction[FloatTensor, FloatTensor, FloatTensor]): r"""The state-less norm-based TransE interaction function. TransE models relations as a translation from head to tail entities in :math:`\textbf{e}`: .. math:: \textbf{e}_h + \textbf{e}_r \approx \textbf{e}_t This equation is rearranged and the :math:`l_p` norm is applied to create the TransE interaction function. .. math:: f(h, r, t) = - \|\textbf{e}_h + \textbf{e}_r - \textbf{e}_t\|_{p} While this formulation is computationally efficient, it inherently cannot model one-to-many, many-to-one, and many-to-many relationships. For triples :math:`(h,r,t_1), (h,r,t_2) \in \mathcal{K}` where :math:`t_1 \neq t_2`, the model adapts the embeddings in order to ensure :math:`\textbf{e}_h + \textbf{e}_r \approx \textbf{e}_{t_1}` and :math:`\textbf{e}_h + \textbf{e}_r \approx \textbf{e}_{t_2}` which results in :math:`\textbf{e}_{t_1} \approx \textbf{e}_{t_2}`. --- citation: author: Bordes year: 2013 link: http://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data.pdf """
[docs] def forward(self, h: FloatTensor, r: FloatTensor, t: FloatTensor) -> FloatTensor: """Evaluate the interaction function. .. seealso:: :meth:`Interaction.forward <pykeen.nn.modules.Interaction.forward>` for a detailed description about the generic batched form of the interaction function. :param h: shape: ``(*batch_dims, d)`` The head representations. :param r: shape: ``(*batch_dims, d)`` The relation representations. :param t: shape: ``(*batch_dims, d)`` The tail representations. :return: shape: ``batch_dims`` The scores. """ return negative_norm_of_sum(h, r, -t, p=self.p, power_norm=self.power_norm)
[docs] @parse_docdata class TransFInteraction(Interaction[FloatTensor, FloatTensor, FloatTensor]): r"""The state-less norm-based TransF interaction function. It is given by .. math :: f(\mathbf{h}, \mathbf{r}, \mathbf{t}) = (\mathbf{h} + \mathbf{r})^T \mathbf{t} + \mathbf{h}^T (\mathbf{r} - \mathbf{t}) for head entity, relation, and tail entity representations $\mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{R}^d$. The interaction function can be simplified as .. math :: f(\mathbf{h}, \mathbf{r}, \mathbf{t}) &=& (\mathbf{h} + \mathbf{r})^T \mathbf{t} + \mathbf{h}^T (\mathbf{t} - \mathbf{r}) \\ &=& \langle \mathbf{h}, \mathbf{t}\rangle + \langle \mathbf{r}, \mathbf{t}\rangle + \langle \mathbf{h}, \mathbf{t}\rangle - \langle \mathbf{h}, \mathbf{r}\rangle \\ &=& 2 \cdot \langle \mathbf{h}, \mathbf{t}\rangle + \langle \mathbf{r}, \mathbf{t}\rangle - \langle \mathbf{h}, \mathbf{r}\rangle .. note :: This is the *balanced* variant from the paper. .. todo :: Implement the unbalanced version, too: $f(\mathbf{h}, \mathbf{r}, \mathbf{t}) = (\mathbf{h} + \mathbf{r})^T \mathbf{t}$ --- citation: author: Feng year: 2016 link: https://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12887 arxiv: 1505.05253 """ # TODO: implement the unbalanced variant from the paper: f(h, r, t) = (h + r)^T t
[docs] def forward(self, h: FloatTensor, r: FloatTensor, t: FloatTensor) -> FloatTensor: """Evaluate the interaction function. .. seealso:: :meth:`Interaction.forward <pykeen.nn.modules.Interaction.forward>` for a detailed description about the generic batched form of the interaction function. :param h: shape: ``(*batch_dims, d)`` The head representations. :param r: shape: ``(*batch_dims, d)`` The relation representations. :param t: shape: ``(*batch_dims, d)`` The tail representations. :return: shape: ``batch_dims`` The scores. """ return tensor_sum(2 * batched_dot(h, t), batched_dot(r, t), -batched_dot(h, r))
[docs] @parse_docdata class ComplExInteraction(Interaction[FloatTensor, FloatTensor, FloatTensor]): r"""The ComplEx interaction proposed by [trouillon2016]_. ComplEx operates on complex-valued entity and relation representations, i.e., $\textbf{e}_i, \textbf{r}_i \in \mathbb{C}^d$ and calculates the plausibility score via the Hadamard product: .. math:: f(h,r,t) = Re(\mathbf{e}_h\odot\mathbf{r}_r\odot\bar{\mathbf{e}}_t) Which expands to: .. math:: f(h,r,t) = \left\langle Re(\mathbf{e}_h),Re(\mathbf{r}_r),Re(\mathbf{e}_t)\right\rangle + \left\langle Im(\mathbf{e}_h),Re(\mathbf{r}_r),Im(\mathbf{e}_t)\right\rangle + \left\langle Re(\mathbf{e}_h),Im(\mathbf{r}_r),Im(\mathbf{e}_t)\right\rangle - \left\langle Im(\mathbf{e}_h),Im(\mathbf{r}_r),Re(\mathbf{e}_t)\right\rangle where $Re(\textbf{x})$ and $Im(\textbf{x})$ denote the real and imaginary parts of the complex valued vector $\textbf{x}$. Because the Hadamard product is not commutative in the complex space, ComplEx can model anti-symmetric relations in contrast to DistMult. .. seealso :: Official implementation: https://github.com/ttrouill/complex/ .. note:: this method generally expects all tensors to be of complex datatype, i.e., `torch.is_complex(x)` to evaluate to `True`. However, for backwards compatibility and convenience in use, you can also pass real tensors whose shape is compliant with :func:`torch.view_as_complex`, cf. :func:`pykeen.utils.ensure_complex`. --- citation: arxiv: 1606.06357 author: Trouillon github: ttrouill/complex link: https://arxiv.org/abs/1606.06357 year: 2016 """ is_complex: ClassVar[bool] = True # TODO: update class docstring
[docs] def forward(self, h: FloatTensor, r: FloatTensor, t: FloatTensor) -> FloatTensor: """Evaluate the interaction function. .. seealso:: :meth:`Interaction.forward <pykeen.nn.modules.Interaction.forward>` for a detailed description about the generic batched form of the interaction function. :param h: shape: ``(*batch_dims, d)`` The head representations. :param r: shape: ``(*batch_dims, d)`` The relation representations. :param t: shape: ``(*batch_dims, d)`` The tail representations. :return: shape: ``batch_dims`` The scores. """ return torch.real(einsum("...d, ...d, ...d -> ...", h, r, torch.conj(t)))
@dataclasses.dataclass class ConvEResolvedImageShape: """The resolved shape of the ConvE 'image'.""" dim: int width: int height: int channels: int @property def is_valid(self) -> bool: """Determine whether the given shape is a valid factorization of the embedding dimension.""" return self.channels * self.width * self.height == self.dim @classmethod def make(cls, channels: int | None, dim: int | None, height: int | None, width: int | None) -> Self: """ Automatically calculates missing dimensions for ConvE. The dimensions need to fulfil $channels * height * width = dim$. :param channels: the number of input channels :param dim: the embedding dimension :param height: the "image" height :param width: the "image" width :return: a resolve shape information. :raises ValueError: when the constraints cannot be satisfied. """ if dim is None: if channels is None or width is None or height is None: raise ValueError( f"When {dim=} none of the other dimensions may be None, " f"but {channels=}, {width=}, and {height=}" ) dim = channels * width * height # All are None -> try and make closest to square if channels is None and width is None and height is None: result_sqrt = math.floor(math.sqrt(dim)) height = max(factor for factor in range(1, result_sqrt + 1) if dim % factor == 0) width = dim // height return cls(dim=dim, width=width, height=height, channels=1) # Only input channels is None if channels is None and width is not None and height is not None: return cls(dim=dim, width=width, height=height, channels=dim // (width * height)) # Only width is None if channels is not None and width is None and height is not None: return cls(dim=dim, width=dim // (height * channels), height=height, channels=channels) # Only height is none if height is None and width is not None and channels is not None: return cls(dim=dim, width=width, height=dim // (width * channels), channels=channels) # Height and input_channels are None -> set input_channels to 1 and calculage height if channels is None and height is None and width is not None: return cls(dim=dim, width=width, height=dim // width, channels=1) # Width and input channels are None -> set input channels to 1 and calculate width if channels is None and height is not None and width is None: return cls(dim=dim, width=dim // height, height=height, channels=1) raise ValueError(f"Could not resolve {channels=}, {height=}, {width=} = {dim=}.") @dataclasses.dataclass class ConvEShapeInformation: """Resolved ConvE shape information.""" #: the embedding dimension embedding_dim: int #: the number of input channels of the convolution input_channels: int #: the embedding "image" height image_height: int #: the embedding "image" width image_width: int #: the number of output channels of the convolution output_channels: int #: the convolution kernel height kernel_height: int #: the convolution kernel width kernel_width: int @property def num_in_features(self) -> int: """The number of input features to the linear layer.""" return ( self.output_channels * (2 * self.image_height - self.kernel_height + 1) * (self.image_width - self.kernel_width + 1) ) @classmethod def make( cls, embedding_dim: int | None, image_width: int | None = None, image_height: int | None = None, input_channels: int | None = None, output_channels: int = 32, kernel_width: int = 3, kernel_height: int | None = None, ) -> Self: """Automatically calculates missing dimensions for ConvE. :param embedding_dim: The embedding dimension. :param image_width: The width of the embedding "image". :param image_height: The height of the embedding "image". :param input_channels: The number of input channels for the convolution. :param output_channels: The number of output channels for the convolution. :param kernel_width: The width of the convolution kernel. :param kernel_height: The height of the convolution kernel. :return: Fully resolve shapes. :raises ValueError: If no factorization could be found. """ # resolve image shape logger.info(f"Resolving {input_channels} * {image_width} * {image_height} = {embedding_dim}.") # Store initial input for error message original = (input_channels, image_width, image_height) # infer open dimensions from the remainder image_shape = ConvEResolvedImageShape.make( dim=embedding_dim, height=image_height, width=image_width, channels=input_channels, ) if not image_shape.is_valid: raise ValueError(f"Could not resolve {original} to a valid factorization of {embedding_dim}.") # resolve kernel size defaults kernel_height = kernel_height or kernel_width return cls( embedding_dim=image_shape.dim, input_channels=image_shape.channels, image_width=image_shape.width, image_height=image_shape.height, kernel_height=kernel_height, kernel_width=kernel_width, output_channels=output_channels, )
[docs] @parse_docdata class ConvEInteraction(Interaction[FloatTensor, FloatTensor, tuple[FloatTensor, FloatTensor]]): r"""The stateful ConvE interaction function. ConvE is a CNN-based approach. For input representations $\mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{R}^d$, it first combines $\mathbf{h}$ and $\mathbf{r}$ into a matrix matrix $\mathbf{A} \in \mathbb{R}^{2 \times d}$, where the first row of $\mathbf{A}$ represents $\mathbf{h}$ and the second row represents $\mathbf{r}$. $\mathbf{A}$ is reshaped to a matrix $\mathbf{B} \in \mathbb{R}^{m \times n}$ where the first $m/2$ half rows represent $\mathbf{h}$ and the remaining $m/2$ half rows represent $\mathbf{r}$. In the convolution layer, a set of *2-dimensional* convolutional filters $\Omega = \{\omega_i \mid \omega_i \in \mathbb{R}^{r \times c}\}$ are applied on $\mathbf{B}$ that capture interactions between $\mathbf{h}$ and $\mathbf{r}$. The resulting feature maps are reshaped and concatenated in order to create a feature vector $\mathbf{v} \in \mathbb{R}^{|\Omega|rc}$. In the next step, $\mathbf{v}$ is mapped into the entity space using a linear transformation $\mathbf{W} \in \mathbb{R}^{|\Omega|rc \times d}$, that is $\mathbf{e}_{h,r} = \mathbf{v}^{T} \mathbf{W}$. The score is then obtained by: .. math:: f(\mathbf{h}, \mathbf{r}, \mathbf{t}) = \mathbf{e}_{h,r} \mathbf{t} Since the interaction model can be decomposed into $f(\mathbf{h}, \mathbf{r}, \mathbf{t}) = \left\langle f'(\mathbf{h}, \mathbf{r}), \mathbf{t} \right\rangle$ the model is particularly designed to 1-N scoring, i.e. efficient computation of scores for $(h,r,t)$ for fixed $h,r$ and many different $t$. The default setting uses batch normalization. Batch normalization normalizes the output of the activation functions, in order to ensure that the weights of the NN don't become imbalanced and to speed up training. However, batch normalization is not the only way to achieve more robust and effective training [santurkar2018]_. Therefore, we added the flag ``apply_batch_normalization`` to turn batch normalization on/off (it's turned on as default). --- citation: author: Dettmers year: 2018 link: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17366 github: TimDettmers/ConvE arxiv: 1707.01476 """ # vector & scalar offset entity_shape = ("d", "") # the offset is only used for tails _head_indices = (0,) #: The head-relation encoder operating on 2D "images" hr2d: nn.Module #: The head-relation encoder operating on the 1D flattened version hr1d: nn.Module def __init__( self, input_channels: int | None = None, output_channels: int = 32, embedding_height: int | None = None, embedding_width: int | None = None, kernel_width: int = 3, kernel_height: int | None = None, input_dropout: float = 0.2, feature_map_dropout: float = 0.2, output_dropout: float = 0.3, embedding_dim: int = 200, apply_batch_normalization: bool = True, ): """ Initialize the interaction module. :param input_channels: the number of input channels for the convolution operation. Can be inferred from other parameters, cf. :func:`_calculate_missing_shape_information`. :param output_channels: the number of input channels for the convolution operation :param embedding_height: the height of the "image" after reshaping the concatenated head and relation embedding. Can be inferred from other parameters, cf. :func:`_calculate_missing_shape_information`. :param embedding_width: the width of the "image" after reshaping the concatenated head and relation embedding. Can be inferred from other parameters, cf. :func:`_calculate_missing_shape_information`. :param kernel_width: the width of the convolution kernel :param kernel_height: the height of the convolution kernel. Defaults to `kernel_width` :param input_dropout: the dropout applied *before* the convolution :param feature_map_dropout: the dropout applied *after* the convolution :param output_dropout: the dropout applied after the linear projection :param embedding_dim: the embedding dimension of entities and relations :param apply_batch_normalization: whether to apply batch normalization """ super().__init__() # Parameter need to fulfil: # input_channels * embedding_height * embedding_width = embedding_dim self.shape_info = ConvEShapeInformation.make( embedding_dim=embedding_dim, input_channels=input_channels, image_width=embedding_width, image_height=embedding_height, kernel_width=kernel_width, kernel_height=kernel_height, output_channels=output_channels, ) # encoders # 1: 2D encoder: BN?, DO, Conv, BN?, Act, DO hr2d_layers = [ nn.BatchNorm2d(self.shape_info.input_channels) if apply_batch_normalization else None, nn.Dropout(input_dropout), nn.Conv2d( in_channels=self.shape_info.input_channels, out_channels=self.shape_info.output_channels, kernel_size=(self.shape_info.kernel_height, self.shape_info.kernel_width), stride=1, padding=0, bias=True, ), nn.BatchNorm2d(self.shape_info.output_channels) if apply_batch_normalization else None, nn.ReLU(), nn.Dropout2d(feature_map_dropout), ] self.hr2d = nn.Sequential(*(layer for layer in hr2d_layers if layer is not None)) # 2: 1D encoder: FC, DO, BN?, Act hr1d_layers = [ nn.Linear(self.shape_info.num_in_features, self.shape_info.embedding_dim), nn.Dropout(output_dropout), nn.BatchNorm1d(self.shape_info.embedding_dim) if apply_batch_normalization else None, nn.ReLU(), ] self.hr1d = nn.Sequential(*(layer for layer in hr1d_layers if layer is not None))
[docs] @add_cudnn_error_hint def forward( self, h: FloatTensor, r: FloatTensor, t: tuple[FloatTensor, FloatTensor], ) -> FloatTensor: """Evaluate the interaction function. .. seealso:: :meth:`Interaction.forward <pykeen.nn.modules.Interaction.forward>` for a detailed description about the generic batched form of the interaction function. :param h: shape: ``(*batch_dims, d)`` The head representations. :param r: shape: ``(*batch_dims, d)`` The relation representations. :param t: two vectors of shape: ``(*batch_dims, d)`` and ``batch_dims`` The tail representations, comprising the tail entity embedding and bias. :return: shape: ``batch_dims`` The scores. """ t_emb, t_bias = t # repeat if necessary, and concat head and relation # shape: -1, num_input_channels, 2*height, width x = torch.cat( torch.broadcast_tensors( h.view( *h.shape[:-1], self.shape_info.input_channels, self.shape_info.image_height, self.shape_info.image_width, ), r.view( *r.shape[:-1], self.shape_info.input_channels, self.shape_info.image_height, self.shape_info.image_width, ), ), dim=-2, ) prefix_shape = x.shape[:-3] x = x.view(-1, self.shape_info.input_channels, 2 * self.shape_info.image_height, self.shape_info.image_width) # shape: -1, num_input_channels, 2*height, width x = self.hr2d(x) # -1, num_output_channels * (2 * height - kernel_height + 1) * (width - kernel_width + 1) x = x.view(-1, self.shape_info.num_in_features) x = self.hr1d(x) # reshape: (-1, dim) -> (*batch_dims, dim) x = x.view(*prefix_shape, h.shape[-1]) # For efficient calculation, each of the convolved [h, r] rows has only to be multiplied with one t row # output_shape: batch_dims x = batched_dot(x, t_emb) # add bias term return x + t_bias
[docs] @parse_docdata class ConvKBInteraction(Interaction[FloatTensor, FloatTensor, FloatTensor]): r"""The stateful ConvKB interaction function. ConvKB uses a convolutional neural network (CNN) whose feature maps capture global interactions of the input. For given input representations for head entity, relation and tail entity, denoted by $\mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{R}^d$, it first combines them to a matrix $\mathbf{A} = [\mathbf{h}; \mathbf{r}; \mathbf{t}] \in \mathbb{R}^{d \times 3}$. In the convolution layer, a set of convolutional filters $\omega_i \in \mathbb{R}^{1 \times 3}$, $i=1, \dots, \tau,$ are applied on the input in order to compute for each dimension global interactions of the embedded triple. Each $\omega_i$ is applied on every row of $\mathbf{A}$ creating a feature map $\mathbf{v}_i = [v_{i,1},...,v_{i,d}] \in \mathbb{R}^d$: .. math:: \mathbf{v}_i = g(\omega_j \mathbf{A} + \mathbf{b}) where $\mathbf{b} \in \mathbb{R}$ denotes a bias term and $g$ an activation function which is employed element-wise. Based on the resulting feature maps $\mathbf{v}_1, \dots, \mathbf{v}_{\tau}$, the plausibility score of a triple is given by: .. math:: f(h,r,t) = [\mathbf{v}_i; \ldots ;\mathbf{v}_\tau] \cdot \mathbf{w} where $[\mathbf{v}_i; \ldots ;\mathbf{v}_\tau] \in \mathbb{R}^{\tau d \times 1}$ and $\mathbf{w} \in \mathbb{R}^{\tau d \times 1}$ is a shared weight vector. ConvKB may be seen as a restriction of :class:`~pykeen.nn.modules.ERMLPInteraction` with a certain weight sharing pattern in the first layer. --- citation: author: Nguyen year: 2018 link: https://www.aclweb.org/anthology/N18-2053 github: daiquocnguyen/ConvKB arxiv: 1712.02121 """ def __init__( self, hidden_dropout_rate: float = 0.0, embedding_dim: int = 200, num_filters: int = 400, ): """ Initialize the interaction module. :param hidden_dropout_rate: the dropout rate applied on the hidden layer :param embedding_dim: the entity and relation embedding dimension :param num_filters: the number of filters (=output channels) of the convolution """ super().__init__() self.embedding_dim = embedding_dim self.num_filters = num_filters # The interaction model self.conv = nn.Conv2d(in_channels=1, out_channels=num_filters, kernel_size=(1, 3), bias=True) self.activation = nn.ReLU() self.hidden_dropout = nn.Dropout(p=hidden_dropout_rate) self.linear = nn.Linear(embedding_dim * num_filters, 1, bias=True) # docstr-coverage: inherited
[docs] def reset_parameters(self): # noqa: D102 # Use Xavier initialization for weight; bias to zero nn.init.xavier_uniform_(self.linear.weight, gain=nn.init.calculate_gain("relu")) nn.init.zeros_(self.linear.bias) # Initialize all filters to [0.1, 0.1, -0.1], # c.f. https://github.com/daiquocnguyen/ConvKB/blob/master/model.py#L34-L36 nn.init.constant_(self.conv.weight[..., :2], 0.1) nn.init.constant_(self.conv.weight[..., 2], -0.1) nn.init.zeros_(self.conv.bias)
[docs] def forward(self, h: FloatTensor, r: FloatTensor, t: FloatTensor) -> FloatTensor: """Evaluate the interaction function. .. seealso:: :meth:`Interaction.forward <pykeen.nn.modules.Interaction.forward>` for a detailed description about the generic batched form of the interaction function. :param h: shape: ``(*batch_dims, d)`` The head representations. :param r: shape: ``(*batch_dims, d)`` The relation representations. :param t: shape: ``(*batch_dims, d)`` The tail representations. :return: shape: ``batch_dims`` The scores. """ # cat into shape (..., 1, d, 3) x = torch.stack(torch.broadcast_tensors(h, r, t), dim=-1).unsqueeze(dim=-3) s = x.shape x = x.view(-1, *s[-3:]) x = self.conv(x) x = x.view(*s[:-3], -1) x = self.activation(x) # Apply dropout, cf. https://github.com/daiquocnguyen/ConvKB/blob/master/model.py#L54-L56 x = self.hidden_dropout(x) # Linear layer for final scores; use flattened representations, shape: (*batch_dims, d * f) x = self.linear(x) return x.squeeze(dim=-1)
[docs] @parse_docdata class DistMultInteraction(Interaction[FloatTensor, FloatTensor, FloatTensor]): r"""The stateless DistMult interaction function. This interaction is given by .. math:: f(\mathbf{h}, \mathbf{r}, \mathbf{t}) = \sum \limits_{i} \mathbf{h}_i \cdot \mathbf{r}_{i} \cdot \mathbf{t}_i where $\mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{R}^{d}$ are the representations for the head entity, the relation, and the tail entity. For a single triple of $d$-dimensional vectors, the computational complexity is given as $\mathcal{O}(d)$. The interaction function is symmetric in the entities, i.e., .. math:: f(h, r, t) = f(t, r, h) --- citation: author: Yang year: 2014 link: https://arxiv.org/abs/1412.6575 arxiv: 1412.6575 """
[docs] def forward(self, h: FloatTensor, r: FloatTensor, t: FloatTensor) -> FloatTensor: """Evaluate the interaction function. .. seealso:: :meth:`Interaction.forward <pykeen.nn.modules.Interaction.forward>` for a detailed description about the generic batched form of the interaction function. :param h: shape: ``(*batch_dims, d)`` The head representations. :param r: shape: ``(*batch_dims, d)`` The relation representations. :param t: shape: ``(*batch_dims, d)`` The tail representations. :return: shape: ``batch_dims`` The scores. """ return tensor_product(h, r, t).sum(dim=-1)
[docs] @parse_docdata class DistMAInteraction(Interaction[FloatTensor, FloatTensor, FloatTensor]): r"""The stateless DistMA interaction function from [shi2019]_. For head entity, relation, and tail representations $\mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{R}^d$, the interaction functions is given by .. math :: \langle \mathbf{h}, \mathbf{r}\rangle + \langle \mathbf{r}, \mathbf{t}\rangle + \langle \mathbf{h}, \mathbf{t}\rangle .. note :: This interaction function is the symmetric part $E_1$ from the respective paper, and not the combination with :class:`~pykeen.nn.modules.ComplExInteraction`. --- citation: author: Shi year: 2019 link: https://www.aclweb.org/anthology/D19-1075.pdf """
[docs] def forward(self, h: FloatTensor, r: FloatTensor, t: FloatTensor) -> FloatTensor: """Evaluate the interaction function. .. seealso:: :meth:`Interaction.forward <pykeen.nn.modules.Interaction.forward>` for a detailed description about the generic batched form of the interaction function. :param h: shape: ``(*batch_dims, d)`` The head representations. :param r: shape: ``(*batch_dims, d)`` The relation representations. :param t: shape: ``(*batch_dims, d)`` The tail representations. :return: shape: ``batch_dims`` The scores. """ return batched_dot(h, r) + batched_dot(r, t) + batched_dot(h, t)
[docs] @parse_docdata class ERMLPInteraction(Interaction[FloatTensor, FloatTensor, FloatTensor]): r"""The ER-MLP stateful interaction function. ER-MLP uses a multi-layer perceptron based approach with a single hidden layer. The $d$-dimensional representations of head entity, relation, and tail entity are concatenated and passed to the hidden layer. The output-layer consists of a single neuron that computes the plausibility score: .. math:: f(\mathbf{h}, \mathbf{r}, \mathbf{t}) = \mathbf{w}^{T} g(\mathbf{W} [\mathbf{h}; \mathbf{r}; \mathbf{t}]), where $\textbf{W} \in \mathbb{R}^{k \times 3d}$ represents the weight matrix of the hidden layer, $\textbf{w} \in \mathbb{R}^{k}$, the weights of the output layer, and $g$ denotes an activation function such as the hyperbolic tangent. --- name: ER-MLP citation: author: Dong year: 2014 link: https://storage.googleapis.com/pub-tools-public-publication-data/pdf/45634.pdf """ @update_docstring_with_resolver_keys( ResolverKey(name="activation", resolver="class_resolver.contrib.torch.activation_resolver") ) def __init__( self, embedding_dim: int, hidden_dim: int | None = None, activation: HintOrType[nn.Module] = nn.ReLU, activation_kwargs: OptionalKwargs = None, ): """Initialize the interaction module. :param embedding_dim: The embedding vector dimension for entities and relations. :param hidden_dim: The hidden dimension of the MLP. Defaults to `embedding_dim`. :param activation: The activation function or a hint thereof. :param activation_kwargs: Additional keyword-based parameters passed to the activation's constructor, if the activation is not pre-instantiated. """ super().__init__() # normalize hidden_dim hidden_dim = hidden_dim or embedding_dim self.hidden = nn.Linear(in_features=3 * embedding_dim, out_features=hidden_dim, bias=True) self.activation = activation_resolver.make(activation, activation_kwargs) self.hidden_to_score = nn.Linear(in_features=hidden_dim, out_features=1, bias=True)
[docs] def forward(self, h: FloatTensor, r: FloatTensor, t: FloatTensor) -> FloatTensor: """Evaluate the interaction function. .. seealso:: :meth:`Interaction.forward <pykeen.nn.modules.Interaction.forward>` for a detailed description about the generic batched form of the interaction function. :param h: shape: ``(*batch_dims, d)`` The head representations. :param r: shape: ``(*batch_dims, d)`` The relation representations. :param t: shape: ``(*batch_dims, d)`` The tail representations. :return: shape: ``batch_dims`` The scores. """ # shortcut for same shape if h.shape == r.shape and h.shape == t.shape: x = self.hidden(torch.cat([h, r, t], dim=-1)) else: # split weight into head-/relation-/tail-specific sub-matrices *prefix, dim = h.shape x = tensor_sum( self.hidden.bias.view(*make_ones_like(prefix), -1), *( einsum("...i, ji -> ...j", xx, weight) for xx, weight in zip([h, r, t], self.hidden.weight.split(split_size=dim, dim=-1)) ), ) return self.hidden_to_score(self.activation(x)).squeeze(dim=-1)
# docstr-coverage: inherited
[docs] def reset_parameters(self): # noqa: D102 # Initialize biases with zero nn.init.zeros_(self.hidden.bias) nn.init.zeros_(self.hidden_to_score.bias) # In the original formulation, nn.init.xavier_uniform_(self.hidden.weight) nn.init.xavier_uniform_( self.hidden_to_score.weight, gain=nn.init.calculate_gain(self.activation.__class__.__name__.lower()), )
[docs] @parse_docdata class ERMLPEInteraction(Interaction[FloatTensor, FloatTensor, FloatTensor]): r"""The stateful ER-MLP (E) interaction function. This interaction uses a neural network-based approach similar to ER-MLP and with slight modifications. In :class:`~pykeen.nn.modules.ERMLPInteraction`, the interaction is: .. math:: f(h, r, t) = \textbf{w}^{T} g(\textbf{W} [\textbf{h}; \textbf{r}; \textbf{t}]) whereas here it is: .. math:: f(h, r, t) = \textbf{t}^{T} f(\textbf{W} (g(\textbf{W} [\textbf{h}; \textbf{r}])) including dropouts and batch-norms between each two hidden layers. Thus, :class:`~pykeen.nn.modules.ConvEInteraction` can be seen as a special case of ERMLP (E). --- name: ER-MLP (E) citation: author: Sharifzadeh year: 2019 link: https://github.com/pykeen/pykeen github: pykeen/pykeen """ def __init__( self, embedding_dim: int = 256, input_dropout: float = 0.2, hidden_dim: int | None = None, hidden_dropout: float | None = None, ): """ Initialize the interaction module. :param embedding_dim: the embedding dimension of entities and relations :param hidden_dim: the hidden dimension of the MLP. Defaults to `embedding_dim`. :param input_dropout: the dropout applied *before* the first layer :param hidden_dropout: the dropout applied *after* the first layer """ super().__init__() hidden_dim = hidden_dim or embedding_dim hidden_dropout = input_dropout if hidden_dropout is None else hidden_dropout self.mlp = nn.Sequential( nn.Dropout(input_dropout), nn.Linear(2 * embedding_dim, hidden_dim), nn.Dropout(hidden_dropout), nn.BatchNorm1d(hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, embedding_dim), nn.Dropout(hidden_dropout), nn.BatchNorm1d(embedding_dim), nn.ReLU(), )
[docs] def forward(self, h: FloatTensor, r: FloatTensor, t: FloatTensor) -> FloatTensor: """Compute broadcasted triple scores given broadcasted representations for head, relation and tails. :param h: shape: ``(*batch_dims, d)`` The head representations. :param r: shape: ``(*batch_dims, d)`` The relation representations. :param t: shape: ``(*batch_dims, d)`` The tail representations. :return: shape: ``batch_dims`` The scores. """ # repeat if necessary, and concat head and relation, (*batch_dims, 2 * embedding_dim) x = torch.cat(torch.broadcast_tensors(h, r), dim=-1) # Predict t embedding, shape: (*batch_dims, d) *batch_dims, dim = x.shape x = self.mlp(x.view(-1, dim)).view(*batch_dims, -1) # dot product return batched_dot(x, t)
[docs] @parse_docdata class TransRInteraction(NormBasedInteraction[FloatTensor, tuple[FloatTensor, FloatTensor], FloatTensor]): r"""The state-less norm-based TransR interaction function. It is given by .. math :: -\|c(\mathbf{M}_{r}\mathbf{h}) + \mathbf{r} - c(\mathbf{M}_{r}\mathbf{t})\|_{2}^2 for head and tail entity representations $\mathbf{h}, \mathbf{t} \in \mathbb{R}^d$, relation representation $\mathbf{r} \in \mathbb{R}^k$, and a relation-specific projection matrix $\mathbf{M}_r \in \mathbb{R}^{k \times d}$. $c$ enforces the constraint $\|\cdot\| \leq 1$, cf. :func:`pykeen.utils.clamp_norm`. .. note :: :class:`pykeen.models.TransR` additionally also enforces $\|\cdot\| \leq 1$ on all embeddings. --- citation: author: Lin year: 2015 link: https://aaai.org/papers/9491-learning-entity-and-relation-embeddings-for-knowledge-graph-completion/ """ relation_shape = ("e", "de") def __init__(self, p: int, power_norm: bool = True, max_projection_norm: float = 1.0): """ Initialize the interaction module. .. seealso:: The parameter ``p`` and ``power_norm`` are directly passed to :class:`~pykeen.nn.modules.NormBasedInteraction`. :param p: The norm used with :func:`torch.linalg.vector_norm`. Typically is 1 or 2. :param power_norm: Whether to use the p-th power of the $L_p$ norm. It has the advantage of being differentiable around 0, and numerically more stable. :param max_projection_norm: The maximum norm to be clamped after projection. """ super().__init__(p=p, power_norm=power_norm) self.max_projection_norm = max_projection_norm
[docs] def forward(self, h: FloatTensor, r: tuple[FloatTensor, FloatTensor], t: FloatTensor) -> FloatTensor: """Evaluate the interaction function. .. seealso:: :meth:`Interaction.forward <pykeen.nn.modules.Interaction.forward>` for a detailed description about the generic batched form of the interaction function. :param h: shape: ``(*batch_dims, d)`` The head representations. :param r: shape: ``(*batch_dims, k)`` and ``(*batch_dims, d, k)`` The relation representations. :param t: shape: ``(*batch_dims, d)`` The tail representations. :return: shape: ``batch_dims`` The scores. """ r, m_r = r # project to relation specific subspace h_bot = einsum("...e, ...er -> ...r", h, m_r) t_bot = einsum("...e, ...er -> ...r", t, m_r) # ensure constraints h_bot = clamp_norm(h_bot, p=self.p, dim=-1, maxnorm=self.max_projection_norm) t_bot = clamp_norm(t_bot, p=self.p, dim=-1, maxnorm=self.max_projection_norm) return negative_norm_of_sum(h_bot, r, -t_bot, p=self.p, power_norm=self.power_norm)
[docs] @parse_docdata class RotatEInteraction(NormBasedInteraction[FloatTensor, FloatTensor, FloatTensor]): r"""The RotatE interaction function proposed by [sun2019]_. RotatE operates on complex-valued entity and relation representations, i.e., $\textbf{e}_i, \textbf{r}_i \in \mathbb{C}^d$. .. note:: this method generally expects all tensors to be of complex datatype, i.e., `torch.is_complex(x)` to evaluate to `True`. However, for backwards compatibility and convenience in use, you can also pass real tensors whose shape is compliant with :func:`torch.view_as_complex`, cf. :func:`pykeen.utils.ensure_complex`. --- citation: arxiv: 1902.10197 author: Sun github: DeepGraphLearning/KnowledgeGraphEmbedding link: https://arxiv.org/abs/1902.10197 year: 2019 """ # TODO: update docstring is_complex: ClassVar[bool] = True def __init__(self, p: int = 2, power_norm: bool = False): """ Initialize the interaction module. .. seealso:: The parameter ``p`` and ``power_norm`` are directly passed to :class:`~pykeen.nn.modules.NormBasedInteraction`. :param p: The norm used with :func:`torch.linalg.vector_norm`. Typically is 1 or 2. :param power_norm: Whether to use the p-th power of the $L_p$ norm. It has the advantage of being differentiable around 0, and numerically more stable. """ super().__init__(p=p, power_norm=power_norm)
[docs] def forward(self, h: FloatTensor, r: FloatTensor, t: FloatTensor) -> FloatTensor: """Evaluate the interaction function. .. seealso:: :meth:`Interaction.forward <pykeen.nn.modules.Interaction.forward>` for a detailed description about the generic batched form of the interaction function. :param h: shape: ``(*batch_dims, d)`` The head representations. :param r: shape: ``(*batch_dims, d)`` The relation representations. :param t: shape: ``(*batch_dims, d)`` The tail representations. :return: shape: ``batch_dims`` The scores. """ h, r, t = ensure_complex(h, r, t) if estimate_cost_of_sequence(h.shape, r.shape) < estimate_cost_of_sequence(r.shape, t.shape): # r expresses a rotation in complex plane. # rotate head by relation (=Hadamard product in complex space) h = h * r else: # rotate tail by inverse of relation # The inverse rotation is expressed by the complex conjugate of r. # The score is computed as the distance of the relation-rotated head to the tail. # Equivalently, we can rotate the tail by the inverse relation, and measure the distance to the head, i.e. # |h * r - t| = |h - conj(r) * t| t = t * torch.conj(r) return negative_norm(h - t, p=2, power_norm=False)
[docs] @parse_docdata class HolEInteraction(Interaction[FloatTensor, FloatTensor, FloatTensor]): r"""The stateless HolE interaction function. Holographic embeddings (HolE) make use of the circular correlation operator to compute interactions between latent features of entities and relations: .. math:: f(h,r,t) = \textbf{r}^{T}(\textbf{h} \star \textbf{t}) where the circular correlation $\star: \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}^d$ is defined as: .. math:: [\textbf{a} \star \textbf{b}]_i = \sum_{k=0}^{d-1} \textbf{a}_{k} * \textbf{b}_{(i+k)\ mod \ d} By using the correlation operator each component $[\textbf{h} \star \textbf{t}]_i$ represents a sum over a fixed partition over pairwise interactions. This enables the model to put semantic similar interactions into the same partition and share weights through $\textbf{r}$. Similarly irrelevant interactions of features could also be placed into the same partition which could be assigned a small weight in $\textbf{r}$. --- citation: author: Nickel year: 2016 link: https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/viewFile/12484/11828 github: mnick/holographic-embeddings arxiv: 1510.04935 """
[docs] def forward(self, h: FloatTensor, r: FloatTensor, t: FloatTensor) -> FloatTensor: """Evaluate the interaction function. .. seealso:: :meth:`Interaction.forward <pykeen.nn.modules.Interaction.forward>` for a detailed description about the generic batched form of the interaction function. :param h: shape: ``(*batch_dims, d)`` The head representations. :param r: shape: ``(*batch_dims, d)`` The relation representations. :param t: shape: ``(*batch_dims, d)`` The tail representations. :return: shape: ``batch_dims`` The scores. """ # composite: (*batch_dims, d) composite = circular_correlation(h, t) # inner product with relation embedding return batched_dot(r, composite)
[docs] @parse_docdata class ProjEInteraction(Interaction[FloatTensor, FloatTensor, FloatTensor]): r"""The state-ful ProjE interaction function. The activation function is given as .. math :: g( f( \mathbf{d}_h \odot \mathbf{h} + \mathbf{d}_r \odot \mathbf{r} + \mathbf{b} )^T \mathbf{t} + b_p ) where $\mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{R}^d$ are the head entity, relation, and tail entity representations, $\mathbf{d}_h, \mathbf{d}_r, \mathbf{b} \in \mathbb{R}^d$ and $b_p \in \mathbb{R}$ are global parameters, and $f, g$ activation functions. It can be interpreted as a two-layer neural network with a very special sparsity pattern on the weight matrices. The paper also describes the first operation .. math :: \mathbf{y} = f(\mathbf{d}_h \odot \mathbf{h} + \mathbf{d}_r \odot \mathbf{r} + \mathbf{b} ) as the *combination* operation and the second part .. math :: g(\mathbf{y}^T \mathbf{t} + b_p) as the *projection* layer. .. note :: While the original paper describes using either sigmoid or softmax as the final activation, this implementation defaults to no activation on the final layer. This allows the use of numerically stable implementations of merged activation and loss, such as :class:`torch.nn.BCEWithLogitsLoss` (for sigmoid), or :class:`torch.nn.CrossEntropyLoss` (for softmax). --- citation: author: Shi year: 2017 link: https://aaai.org/papers/10677-aaai-31-2017/ github: nddsg/ProjE arxiv: 1611.05425 """ @update_docstring_with_resolver_keys( ResolverKey(name="inner_activation", resolver="class_resolver.contrib.torch.activation_resolver"), ResolverKey(name="outer_activation", resolver="class_resolver.contrib.torch.activation_resolver"), ) def __init__( self, embedding_dim: int = 50, inner_activation: HintOrType[nn.Module] = None, inner_activation_kwargs: OptionalKwargs = None, outer_activation: HintOrType[nn.Module] = None, outer_activation_kwargs: OptionalKwargs = None, bias_initializer: Hint[Initializer] = init.xavier_uniform_, bias_initializer_kwargs: OptionalKwargs = None, projection_initializer: Hint[Initializer] = init.xavier_uniform_, projection_initializer_kwargs: OptionalKwargs = None, ): """ Initialize the interaction module. :param embedding_dim: the embedding dimension of entities and relations :param inner_activation: the inner non-linearity, or a hint thereof. Defaults to :class:`nn.Tanh`. Disable by passing :class:`nn.Idenity` :param inner_activation_kwargs: additional keyword-based parameters used to instantiate the inner activation function. :param outer_activation: the outer non-linearity, or a hint thereof. Defaults to :class:`nn.Identity`, i.e., no activation. :param outer_activation_kwargs: additional keyword-based parameters used to instantiate the outer activation function. :param bias_initializer: the initializer to use for the biases; defaults to :func:`pykeen.nn.init.xavier_uniform_`. :param bias_initializer_kwargs: additional keyword-based parameters passed to the bias initializer. :param projection_initializer: the initializer to use for the projection; defaults to :func:`pykeen.nn.init.xavier_uniform_`. :param projection_initializer_kwargs: additional keyword-based parameters passed to the projection initializer. """ super().__init__() # Global entity projection self.d_e = nn.Parameter(torch.empty(embedding_dim), requires_grad=True) # Global relation projection self.d_r = nn.Parameter(torch.empty(embedding_dim), requires_grad=True) self.bias_initializer = init.initializer_resolver.make(bias_initializer, bias_initializer_kwargs) # Global combination bias self.b_c = nn.Parameter(torch.empty(embedding_dim), requires_grad=True) # Global combination bias self.b_p = nn.Parameter(torch.empty(tuple()), requires_grad=True) self.projection_initializer = init.initializer_resolver.make( projection_initializer, projection_initializer_kwargs ) if inner_activation is None: inner_activation = nn.Tanh if outer_activation is None: outer_activation = nn.Identity self.inner_activation = activation_resolver.make(inner_activation, inner_activation_kwargs) self.outer_activation = activation_resolver.make(outer_activation, outer_activation_kwargs)
[docs] def forward(self, h: FloatTensor, r: FloatTensor, t: FloatTensor) -> FloatTensor: """Evaluate the interaction function. .. seealso:: :meth:`Interaction.forward <pykeen.nn.modules.Interaction.forward>` for a detailed description about the generic batched form of the interaction function. :param h: shape: ``(*batch_dims, d)`` The head representations. :param r: shape: ``(*batch_dims, d)`` The relation representations. :param t: shape: ``(*batch_dims, d)`` The tail representations. :return: shape: ``batch_dims`` The scores. """ # global projections h = einsum("...d, d -> ...d", h, self.d_e) r = einsum("...d, d -> ...d", r, self.d_r) # combination, shape: (*batch_dims, d) x = self.inner_activation(tensor_sum(h, r, self.b_c)) # dot product with t return self.outer_activation(batched_dot(x, t) + self.b_p)
# docstr-coverage: inherited
[docs] def reset_parameters(self): # noqa: D102 self.projection_initializer(self.d_e) self.projection_initializer(self.d_r) self.bias_initializer(self.b_c) self.bias_initializer(self.b_p)
[docs] @parse_docdata class RESCALInteraction(Interaction[FloatTensor, FloatTensor, FloatTensor]): r"""The state-less RESCAL interaction function. For head and tail entity representations $\mathbf{h}, \mathbf{t} \in \mathbb{R}^d$ and relation representation $\mathbf{R} \in \mathbb{R}^{d \times d}$, the interaction function is given as .. math:: \mathbf{h}^T \textbf{R} \textbf{t} = \sum_{i=1}^{d} \sum_{j=1}^{d} \mathbf{h}_i \mathbf{R}_{i, j} \mathbf{t}_{i} Thus, the relation matrices $\textbf{R}$ contain weights $\textbf{R}_{i, j}$ that capture the amount of interaction between the $i$-th latent factor of the head representation and the $j$-th latent factor. The computational complexity is given by $\mathcal{O}(d^2)$. --- citation: author: Nickel year: 2011 link: https://icml.cc/2011/papers/438_icmlpaper.pdf """ relation_shape = ("dd",)
[docs] def forward(self, h: FloatTensor, r: FloatTensor, t: FloatTensor) -> FloatTensor: """Evaluate the interaction function. .. seealso:: :meth:`Interaction.forward <pykeen.nn.modules.Interaction.forward>` for a detailed description about the generic batched form of the interaction function. :param h: shape: ``(*batch_dims, d)`` The head representations. :param r: shape: ``(*batch_dims, d)`` The relation representations. :param t: shape: ``(*batch_dims, d)`` The tail representations. :return: shape: ``batch_dims`` The scores. """ return einsum("...d,...de,...e->...", h, r, t)
[docs] @parse_docdata class SEInteraction(NormBasedInteraction[FloatTensor, tuple[FloatTensor, FloatTensor], FloatTensor]): r"""The Structured Embedding (SE) interaction function. SE applies role- and relation-specific projection matrices $\textbf{M}_{r}^{h}, \textbf{M}_{r}^{t} \in \mathbb{R}^{d \times d}$ to the head and tail entities' representations $\mathbf{h}, \mathbf{t} \in \mathbb{R}^d$ before computing their distance. .. math:: f(\textbf{h}, (\textbf{M}_{r}^{h}, \textbf{M}_{r}^{t}), \textbf{t}) = -\|\textbf{M}_{r}^{h} \textbf{h} - \textbf{M}_{r}^{t} \textbf{t}\|_p --- name: Structured Embedding citation: author: Bordes year: 2011 link: https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/download/3659/3898 """ relation_shape = ("dd", "dd")
[docs] def forward(self, h: FloatTensor, r: FloatTensor, t: FloatTensor) -> FloatTensor: """Evaluate the interaction function. .. seealso:: :meth:`Interaction.forward <pykeen.nn.modules.Interaction.forward>` for a detailed description about the generic batched form of the interaction function. :param h: shape: ``(*batch_dims, d)`` The head representations. :param r: shape: ``(*batch_dims, d, d)`` and ``(*batch_dims, d, d)``. The relation representations. :param t: shape: ``(*batch_dims, d)`` The tail representations. :return: shape: ``batch_dims`` The scores. """ r_h, r_t = r # projections p_h = einsum("...rd,...d->...r", r_h, h) p_t = einsum("...rd,...d->...r", r_t, t) return negative_norm(p_h - p_t, p=self.p, power_norm=self.power_norm)
[docs] @parse_docdata class TuckERInteraction(Interaction[FloatTensor, FloatTensor, FloatTensor]): r"""The stateful TuckER interaction function. The interaction function is inspired by the `Tucker tensor decomposition <https://en.wikipedia.org/wiki/Tucker_decomposition>`_. The base form is given as .. math :: \mathbf{Z} \times_1 \mathbf{h} \times_2 \mathbf{r} \times_3 \mathbf{t} = \sum_{1 \leq i, k \leq d_e, 1 \leq j \leq d_r} \mathbf{Z}_{i, j, k} \cdot \mathbf{h}_{i} \cdot \mathbf{r}_{j} \cdot \mathbf{t}_{k} where $\mathbf{h}, \mathbf{t} \in \mathbb{R}^{d_e}$ are the head and tail entity representation, $\mathbf{r} \in \mathbb{R}^{d_r}$ is the relation representation, and $\mathbf{Z} \in \mathbb{R}^{d_e \times d_r \times d_e}$ is a *global* parameter, and $\times_k$ denotes the tensor product along the $k$-th dimension. The implementation further adds :class:`~torch.nn.BatchNorm1d` and :class:`~torch.nn.Dropout` layers at the following locations: .. math :: \textit{DO}_{hr}(\textit{BN}_{hr}( \textit{DO}_h(\textit{BN}_h(\mathbf{h})) \times_1 \textit{DO}_r(\mathbf{Z} \times_2 \mathbf{r}) ) \times_3 \mathbf{t} The implementation a has complexity of $\mathcal{O}(d_e^2 d_r)$, and requires $\mathcal{O}(d_e^2 d_r)$ global trainable parameters. --- citation: author: Balažević year: 2019 arxiv: 1901.09590 link: https://arxiv.org/abs/1901.09590 github: ibalazevic/TuckER """ # default core tensor initialization # cf. https://github.com/ibalazevic/TuckER/blob/master/model.py#L12 default_core_initializer: ClassVar[Initializer] = staticmethod(nn.init.uniform_) # type: ignore default_core_initializer_kwargs: Mapping[str, Any] = {"a": -1.0, "b": 1.0} @update_docstring_with_resolver_keys( ResolverKey(name="core_initializer", resolver="pykeen.nn.init.initializer_resolver") ) def __init__( self, embedding_dim: int = 200, relation_dim: int | None = None, head_dropout: float = 0.3, relation_dropout: float = 0.4, head_relation_dropout: float = 0.5, apply_batch_normalization: bool = True, core_initializer: Hint[Initializer] = None, core_initializer_kwargs: OptionalKwargs = None, ): """Initialize the Tucker interaction function. :param embedding_dim: The entity embedding dimension. :param relation_dim: The relation embedding dimension. Defaults to ``embedding_dim``. :param head_dropout: The dropout rate applied to the head representations. :param relation_dropout: The dropout rate applied to the relation representations. :param head_relation_dropout: The dropout rate applied to the combined head and relation representations. :param apply_batch_normalization: Whether to use batch normalization on head representations and the combination of head and relation. :param core_initializer: The core tensor's initializer, or a hint thereof. Defaults to :attr:`~pykeen.nn.modules.TuckerInteraction.default_core_initializer`. :param core_initializer_kwargs: Additional keyword-based parameters for the initializer. Defaults to :attr:`~pykeen.nn.modules.TuckerInteraction.default_core_initializer_kwargs`. """ super().__init__() # normalize initializer if core_initializer is None: core_initializer = self.default_core_initializer self.core_initializer = core_initializer if core_initializer is self.default_core_initializer and core_initializer_kwargs is None: core_initializer_kwargs = self.default_core_initializer_kwargs self.core_initializer_kwargs = core_initializer_kwargs # normalize relation dimension if relation_dim is None: relation_dim = embedding_dim # Core tensor # Note: we use a different dimension permutation as in the official implementation to match the paper. self.core_tensor = nn.Parameter( torch.empty(embedding_dim, relation_dim, embedding_dim), requires_grad=True, ) # Dropout self.head_dropout = nn.Dropout(head_dropout) self.relation_dropout = nn.Dropout(relation_dropout) self.head_relation_dropout = nn.Dropout(head_relation_dropout) if apply_batch_normalization: self.head_batch_norm = nn.BatchNorm1d(embedding_dim) self.head_relation_batch_norm = nn.BatchNorm1d(embedding_dim) else: self.head_batch_norm = self.head_relation_batch_norm = None self.reset_parameters() # docstr-coverage: inherited
[docs] def reset_parameters(self): # noqa: D102 # instantiate here to make module easily serializable core_initializer = init.initializer_resolver.make( self.core_initializer, pos_kwargs=self.core_initializer_kwargs ) core_initializer(self.core_tensor)
# batch norm gets reset automatically, since it defines reset_parameters
[docs] def forward(self, h: FloatTensor, r: FloatTensor, t: FloatTensor) -> FloatTensor: """Evaluate the interaction function. .. seealso:: :meth:`Interaction.forward <pykeen.nn.modules.Interaction.forward>` for a detailed description about the generic batched form of the interaction function. :param h: shape: ``(*batch_dims, d)`` The head representations. :param r: shape: ``(*batch_dims, d)`` The relation representations. :param t: shape: ``(*batch_dims, d)`` The tail representations. :return: shape: ``batch_dims`` The scores. """ h = self.head_dropout(apply_optional_bn(x=h, batch_norm=self.head_batch_norm)) # x_2 contraction r = einsum("ijk,...j->...ik", self.core_tensor, r) r = self.relation_dropout(r) # x_1 contraction return batched_dot( self.head_relation_dropout( apply_optional_bn( x=einsum("...ik,...i->...k", r, h), batch_norm=self.head_relation_batch_norm, ) ), t, )
[docs] @parse_docdata class UMInteraction(NormBasedInteraction[FloatTensor, tuple[()], FloatTensor]): r"""The Unstructured Model (UM) interaction function. UM calculates the score as the negative distance between head and tail entities: .. math:: -\|\textbf{h} - \textbf{t}\|_p^2 It is appropriate for networks with a single relationship type that is undirected. .. warning:: In UM, neither the relations nor the directionality are considered, so it can't distinguish between them. However, it may serve as a baseline for comparison against relation-aware models. --- name: Unstructured Model citation: author: Bordes year: 2014 link: https://link.springer.com/content/pdf/10.1007%2Fs10994-013-5363-6.pdf """ # shapes relation_shape: Sequence[str] = tuple() def __init__(self, p: int, power_norm: bool = True): """Initialize the norm-based interaction function. .. seealso:: The parameter ``p`` and ``power_norm`` are directly passed to :class:`~pykeen.nn.modules.NormBasedInteraction`. :param p: The norm used with :func:`torch.linalg.vector_norm`. Typically is 1 or 2. :param power_norm: Whether to use the p-th power of the $L_p$ norm. It has the advantage of being differentiable around 0, and numerically more stable. """ super().__init__(p=p, power_norm=power_norm)
[docs] def forward(self, h: FloatTensor, r: tuple[()], t: FloatTensor) -> FloatTensor: """Evaluate the interaction function. .. seealso:: :meth:`Interaction.forward <pykeen.nn.modules.Interaction.forward>` for a detailed description about the generic batched form of the interaction function. :param h: shape: ``(*batch_dims, d)`` The head representations. :param r: No relation representations. :param t: shape: ``(*batch_dims, d)`` The tail representations. :return: shape: ``batch_dims`` The scores. """ return negative_norm(h - t, p=self.p, power_norm=self.power_norm)
[docs] @parse_docdata class TorusEInteraction(NormBasedInteraction[FloatTensor, FloatTensor, FloatTensor]): """The TorusE interaction function from [ebisu2018]. .. note :: This only implements the two L_p norm based variants. --- citation: author: Ebisu year: 2018 link: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16227 arxiv: 1711.05435 github: TakumaE/TorusE """ def __init__(self, p: int = 2, power_norm: bool = False): """ Initialize the interaction module. .. seealso:: The parameter ``p`` and ``power_norm`` are directly passed to :class:`~pykeen.nn.modules.NormBasedInteraction`. :param p: The norm used with :func:`torch.linalg.vector_norm`. Typically is 1 or 2. :param power_norm: Whether to use the p-th power of the $L_p$ norm. It has the advantage of being differentiable around 0, and numerically more stable. """ super().__init__(p=p, power_norm=power_norm)
[docs] def forward(self, h: FloatTensor, r: FloatTensor, t: FloatTensor) -> FloatTensor: """Evaluate the interaction function. .. seealso:: :meth:`Interaction.forward <pykeen.nn.modules.Interaction.forward>` for a detailed description about the generic batched form of the interaction function. :param h: shape: ``(*batch_dims, d)`` The head representations. :param r: shape: ``(*batch_dims, d)`` The relation representations. :param t: shape: ``(*batch_dims, d)`` The tail representations. :return: shape: ``batch_dims`` The scores. """ d = tensor_sum(h, r, -t) d = d - torch.floor(d) d = torch.minimum(d, 1.0 - d) return negative_norm(d, p=self.p, power_norm=self.power_norm)
[docs] @parse_docdata class TransDInteraction( NormBasedInteraction[ tuple[FloatTensor, FloatTensor], tuple[FloatTensor, FloatTensor], tuple[FloatTensor, FloatTensor] ] ): r"""The TransD interaction function. TransD is an extension of :class:`~pykeen.nn.modules.TransRInteraction` that, like TransR, considers entities and relations as objects living in different vector spaces. However, instead of performing the same relation-specific projection for all entity embeddings, entity-relation-specific projection matrices $\mathbf{M}_{r, h}, \mathbf{M}_{t, h} \in \mathbb{R}^{k \times d}$ are constructed. To do so, all head entities, tail entities, and relations are represented by two vectors, $\mathbf{h}_v, \mathbf{h}_p, \mathbf{t}_v, \mathbf{t}_p \in \mathbb{R}^d$ and $\mathbf{r}_v, \mathbf{r}_v \in \mathbb{R}^k$, respectively. The first set of representations is used for calculating the entity-relation-specific projection matrices: .. math:: \mathbf{M}_{r, h} &=& \mathbf{r}_p \mathbf{h}_p^{T} + \tilde{\mathbf{I}} \mathbf{M}_{r, t} &=& \mathbf{r}_p \mathbf{t}_p^{T} + \tilde{\mathbf{I}} where $\tilde{\textbf{I}} \in \mathbb{R}^{k \times d}$ is a $k \times d$ matrix with ones on the diagonal and zeros elsewhere. Next, $\mathbf{h}_v$ and $\mathbf{t}_v$ are projected into the relation space by means of the constructed projection matrices, before calculating a distance similar to :class:`~pykeen.nn.modules.TransEInteraction`: .. math:: -\|c(\mathbf{M}_{r, h} \mathbf{h}_v) + \mathbf{r}_v - c(\mathbf{M}_{r, t} \mathbf{t}_v)\|_{2}^2 where $c$ enforces the constraint $\|\cdot\| \leq 1$. .. note :: :class:`~pykeen.models.TransD` additionally enforces $\|\mathbf{h}\|, \|\mathbf{r}\|, \|\mathbf{t}\| \leq 1$. --- citation: author: Ji year: 2015 link: http://www.aclweb.org/anthology/P15-1067 """ entity_shape = ("d", "d") relation_shape = ("e", "e") def __init__(self, p: int = 2, power_norm: bool = True): """ Initialize the interaction module. .. seealso:: The parameters ``p`` and ``power_norm`` are directly passed to :class:`~pykeen.nn.modules.NormBasedInteraction` :param p: The norm used with :func:`torch.linalg.vector_norm`. Typically is 1 or 2. :param power_norm: Whether to use the p-th power of the $L_p$ norm. It has the advantage of being differentiable around 0, and numerically more stable. """ super().__init__(p=p, power_norm=power_norm)
[docs] def forward( self, h: tuple[FloatTensor, FloatTensor], r: tuple[FloatTensor, FloatTensor], t: tuple[FloatTensor, FloatTensor] ) -> FloatTensor: """Evaluate the interaction function. .. seealso:: :meth:`Interaction.forward <pykeen.nn.modules.Interaction.forward>` for a detailed description about the generic batched form of the interaction function. :param h: shape: ``(*batch_dims, d)`` and ``(*batch_dims, d)`` The head representations. :param r: shape: ``(*batch_dims, e)`` and ``(*batch_dims, e)`` The relation representations. :param t: shape: ``(*batch_dims, d)`` and ``(*batch_dims, d)`` The tail representations. :return: shape: ``batch_dims`` The scores. """ h_emb, h_p = h r_emb, r_p = r t_emb, t_p = t # Project entities h_bot = project_entity(e=h_emb, e_p=h_p, r_p=r_p) t_bot = project_entity(e=t_emb, e_p=t_p, r_p=r_p) return negative_norm_of_sum(h_bot, r_emb, -t_bot, p=self.p, power_norm=self.power_norm)
[docs] @parse_docdata class NTNInteraction( Interaction[FloatTensor, tuple[FloatTensor, FloatTensor, FloatTensor, FloatTensor, FloatTensor], FloatTensor], ): r"""The state-less Neural Tensor Network (NTN) interaction function. It is given by .. math:: \mathbf{r}_{u}^{T} \cdot \sigma( \mathbf{h} \mathbf{R}_{3} \mathbf{t} + \mathbf{R}_{2} [\mathbf{h};\mathbf{t}] + \mathbf{r}_1 ) with $\mathbf{W}_3 \in \mathbb{R}^{d \times d \times k}$, $\textbf{R}_2 \in \mathbb{R}^{k \times 2d}$, the bias vector $\textbf{r}_1$, the final projection $\textbf{r}_u \in \mathbb{R}^k$, and a non-linear activation function $\sigma$ (which defaults to :class:`~torch.nn.Tanh`). It can be seen as an extension of a two-layer MLP with relation-specific weights and an additional bi-linear tensor in the input layer. A separately parameterized neural network for each relationship makes the model very expressive, but also computationally expensive ($\mathcal{O}(kd^2)$). .. note:: We split the original $k \times 2d$-dimensional $\mathbf{R}_2$ matrix into two parts of shape $k \times d$ to support more efficient 1:n scoring, e.g., in the :meth:`~pykeen.models.Model.score_h` or :meth:`~pykeen.models.Model.score_t` setting. --- citation: author: Socher year: 2013 link: https://proceedings.neurips.cc/paper/2013/file/b337e84de8752b27eda3a12363109e80-Paper.pdf github: khurram18/NeuralTensorNetworks """ relation_shape = ("kdd", "kd", "kd", "k", "k") @update_docstring_with_resolver_keys( ResolverKey(name="activation", resolver="class_resolver.contrib.torch.activation_resolver") ) def __init__( self, activation: HintOrType[nn.Module] = None, activation_kwargs: Mapping[str, Any] | None = None, ): """Initialize NTN with the given non-linear activation function. :param activation: A non-linear activation function. Defaults to the hyperbolic tangent :class:`torch.nn.Tanh` if ``None``. :param activation_kwargs: If the ``activation`` is passed as a class, these keyword arguments are used during its instantiation. """ super().__init__() if activation is None: activation = nn.Tanh() self.activation = activation_resolver.make(activation, activation_kwargs)
[docs] def forward( self, h: FloatTensor, r: tuple[FloatTensor, FloatTensor, FloatTensor, FloatTensor, FloatTensor], t: FloatTensor ) -> FloatTensor: """Evaluate the interaction function. .. seealso:: :meth:`Interaction.forward <pykeen.nn.modules.Interaction.forward>` for a detailed description about the generic batched form of the interaction function. :param h: shape: ``(*batch_dims, d)`` The head representations. :param r: shape: ``(*batch_dims, k, d, d)``, ``(*batch_dims, k, d)``, ``(*batch_dims, k, d)``, ``(*batch_dims, k)``, and ``(*batch_dims, k)`` The relation representations. :param t: shape: ``(*batch_dims, d)`` The tail representations. :return: shape: ``batch_dims`` The scores. """ w, vh, vt, b, u = r return batched_dot( u, self.activation( tensor_sum( einsum("...d,...kde,...e->...k", h, w, t), einsum("...d, ...kd->...k", h, vh), einsum("...d, ...kd->...k", t, vt), b, ) ), )
[docs] @parse_docdata class KG2EInteraction( Interaction[tuple[FloatTensor, FloatTensor], tuple[FloatTensor, FloatTensor], tuple[FloatTensor, FloatTensor]] ): r"""The stateless KG2E interaction function. Inspired by :class:`~pykeen.nn.modules.TransEInteraction`, relations are modeled as transformations from head to tail entities $\mathcal{H} - \mathcal{T} \approx \mathcal{R}$, where .. math :: \mathcal{H} \sim \mathcal{N}(\mu_h, \Sigma_h)\\ \mathcal{T} \sim \mathcal{N}(\mu_t, \Sigma_t)\\ \mathcal{R} \sim \mathcal{N}(\mu_r, \Sigma_r) and thus, since head and tail entities are considered independent with respect to the relations, .. math :: \mathcal{P}_e = \mathcal{H} - \mathcal{T} \sim \mathcal{N}(\mu_h - \mu_t, \Sigma_h + \Sigma_t) To obtain scores, the interaction measures the similarity between $\mathcal{P}_e$ and $\mathcal{P}_r = \mathcal{N}(\mu_r, \Sigma_r)$, either by means of the (asymmetric) :class:`~pykeen.nn.sim.NegativeKullbackLeiblerDivergence`, or a symmetric variant with :class:`~pykeen.nn.sim.ExpectedLikelihood`. .. note :: This interaction module does *not* sub-class from :class:`~pykeen.nn.modules.FunctionalInteraction` just for the technical reason that the choice of the similarity represents some "state". However, it does not contain any trainable parameters. --- citation: author: He year: 2015 link: https://dl.acm.org/doi/10.1145/2806416.2806502 """ entity_shape = ("d", "d") relation_shape = ("d", "d") similarity: KG2ESimilarity @update_docstring_with_resolver_keys( ResolverKey(name="similarity", resolver="pykeen.nn.sim.kg2e_similarity_resolver") ) def __init__(self, similarity: HintOrType[KG2ESimilarity] | None = None, similarity_kwargs: OptionalKwargs = None): """ Initialize the interaction module. :param similarity: The similarity measures for gaussian distributions. Defaults to :class:`~pykeen.nn.sim.NegativeKullbackLeiblerDivergence`. :param similarity_kwargs: Additional keyword-based parameters used to instantiate the similarity. """ super().__init__() self.similarity = kg2e_similarity_resolver.make(similarity, similarity_kwargs)
[docs] def forward( self, h: tuple[FloatTensor, FloatTensor], r: tuple[FloatTensor, FloatTensor], t: tuple[FloatTensor, FloatTensor] ) -> FloatTensor: """Evaluate the interaction function. :param h: both shape: (`*batch_dims`, `d`) The head representations, mean and (diagonal) variance. :param r: shape: (`*batch_dims`, `d`) The relation representations, mean and (diagonal) variance. :param t: shape: (`*batch_dims`, `d`) The tail representations, mean and (diagonal) variance. :return: shape: batch_dims The scores. """ h_mean, h_var = h r_mean, r_var = r t_mean, t_var = t return self.similarity( h=GaussianDistribution(mean=h_mean, diagonal_covariance=h_var), r=GaussianDistribution(mean=r_mean, diagonal_covariance=r_var), t=GaussianDistribution(mean=t_mean, diagonal_covariance=t_var), )
[docs] @parse_docdata class TransHInteraction(NormBasedInteraction[FloatTensor, tuple[FloatTensor, FloatTensor], FloatTensor]): r"""The norm-based TransH interaction function. This model extends :class:`~pykeen.models.TransEInteraction` by applying the translation from head to tail entity in a relation-specific hyperplane in order to address its inability to model one-to-many, many-to-one, and many-to-many relations. In TransH, each relation is represented by a hyperplane, or more specifically a normal vector of this hyperplane $\mathbf{r}_{w} \in \mathbb{R}^d$ and a vector $\mathbf{r}_{d} \in \mathbb{R}^d$ that lies in the hyperplane. To obtain a plausibility score, the head representation $\mathbf{h} \in \mathbb{R}^d$, and the tail embedding $\mathbf{t} \in \mathbb{R}^d$ are first projected onto the relation-specific hyperplane: .. math:: \mathbf{h}_{r} = \mathbf{h} - \mathbf{r}_{w}^T \mathbf{h} \mathbf{r}_w \mathbf{t}_{r} = \mathbf{t} - \mathbf{r}_{w}^T \mathbf{t} \mathbf{r}_w Then, the projected representations are used to compute the score as in :class:`~pykeen.nn.modules.TransEInteraction`: .. math:: -\|\textbf{h}_{r} + \textbf{r}_d - \textbf{t}_{r}\|_{p}^2 --- citation: author: Wang year: 2014 link: https://aaai.org/papers/8870-knowledge-graph-embedding-by-translating-on-hyperplanes/ """ relation_shape = ("d", "d")
[docs] def forward(self, h: FloatTensor, r: tuple[FloatTensor, FloatTensor], t: FloatTensor) -> FloatTensor: """Evaluate the interaction function. .. seealso:: :meth:`Interaction.forward <pykeen.nn.modules.Interaction.forward>` for a detailed description about the generic batched form of the interaction function. :param h: shape: ``(*batch_dims, d)`` The head representations. :param r: shape: ``(*batch_dims, d)`` The relation representations. :param t: shape: ``(*batch_dims, d)`` The tail representations. :return: shape: ``batch_dims`` The scores. """ w_r, d_r = r return negative_norm_of_sum( # h projection to hyperplane h, -einsum("...i, ...i, ...j -> ...j", h, w_r, w_r), # r d_r, # -t projection to hyperplane -t, einsum("...i, ...i, ...j -> ...j", t, w_r, w_r), p=self.p, power_norm=self.power_norm, )
[docs] @parse_docdata class MuREInteraction( NormBasedInteraction[ tuple[FloatTensor, FloatTensor], tuple[FloatTensor, FloatTensor], tuple[FloatTensor, FloatTensor] ], ): r"""The norm-based MuRE interaction function from [balazevic2019b]_. For $\mathbf{h}, \mathbf{r}, \mathbf{R}, \mathbf{t} \in \mathbb{R}^d$, and $b_h, b_t \in \mathbb{R}$, it is given by .. math :: -\|\mathbf{R} \odot \mathbf{h} + \mathbf{r} - \mathbf{t}\| + b_h + b_t where $\mathbf{h}, \mathbf{r}, \mathbf{t}$ are head entity, relation, and tail entity embedding vectors, $\mathbf{R}$ is a diagonal relation matrix, and $b_h, b_t$ are head and tail entity biases. .. note:: This module implements a slightly more generic function, where the norm $\| \cdot \|_p$ can be chosen, as well as a variant which uses $\| \cdot \|_p^p$, cf. :class:`~pykeen.nn.modules.NormBasedInteraction`. --- citation: author: Balažević year: 2019 link: https://arxiv.org/abs/1905.09791 arxiv: 1905.09791 """ # there are separate biases for entities in head and tail position entity_shape = ("d", "", "") _head_indices = (0, 1) _tail_indices = (0, 2) relation_shape = ("d", "d")
[docs] def forward( self, h: tuple[FloatTensor, FloatTensor], r: tuple[FloatTensor, FloatTensor], t: tuple[FloatTensor, FloatTensor] ) -> FloatTensor: """Evaluate the interaction function. .. seealso:: :meth:`Interaction.forward <pykeen.nn.modules.Interaction.forward>` for a detailed description about the generic batched form of the interaction function. :param h: shape: ``(*batch_dims, d)`` and ``(*batch_dims)`` The head representations. :param r: shape: ``(*batch_dims, d)`` and ``(*batch_dims, d)`` The relation representations. :param t: shape: ``(*batch_dims, d)`` and ``(*batch_dims)`` The tail representations. :return: shape: ``batch_dims`` The scores. """ h_emb, h_bias = h t_emb, t_bias = t r_vec, r_mat = r return ( negative_norm_of_sum(h_emb * r_mat, r_vec, -t_emb, p=self.p, power_norm=self.power_norm) + h_bias + t_bias )
Clamp = Union[tuple[Optional[float], float], tuple[float, Optional[float]]]
[docs] class ClampedInteraction(Interaction[HeadRepresentation, RelationRepresentation, TailRepresentation]): """An adapter to clamp scores to a minimum or maximum value. .. warning:: The used :func:`torch.clamp` function has zero gradient for scores below the minimum of above the maximum value. Thus, it aggravates gradient-based optimization. """ clamp_score: Clamp | None base: Interaction[HeadRepresentation, RelationRepresentation, TailRepresentation] @update_docstring_with_resolver_keys(ResolverKey(name="base", resolver="interaction_resolver")) def __init__( self, base: LookupOrType[Interaction[HeadRepresentation, RelationRepresentation, TailRepresentation]], base_kwargs: OptionalKwargs = None, clamp_score: Clamp | float | None = None, ): """ Initialize the interaction module. :param base: the base interaction. :param base_kwargs: keyword-based parameters used to instantiate the base interaction :param clamp_score: whether to clamp scores into a fixed interval """ super().__init__() if isinstance(clamp_score, float): clamp_score = (-clamp_score, clamp_score) self.clamp_score = clamp_score self.base = interaction_resolver.make(base, base_kwargs) @property def entity_shape(self) -> Sequence[str]: # type:ignore[override] """Expose the base interaction's entity shape.""" return self.base.entity_shape @property def relation_shape(self) -> Sequence[str]: # type:ignore[override] """Expose the base interaction's relation shape.""" return self.base.relation_shape # docstr-coverage: inherited
[docs] def forward(self, h: HeadRepresentation, r: RelationRepresentation, t: TailRepresentation) -> FloatTensor: scores = self.base(h, r, t) if self.clamp_score is None: return scores low, high = self.clamp_score return torch.clamp(scores, min=low, max=high)
[docs] class DirectionAverageInteraction( Interaction[ tuple[FloatTensor, FloatTensor], tuple[FloatTensor, FloatTensor], tuple[FloatTensor, FloatTensor], ], ): r"""The directional average interaction module. This can be considered as a generalization of the SimplE interaction module that can be parametrized with any other interaction module, rather than just :class:`pykeen.nn.modules.DistMultInteraction`. A separate representation is learned for each entity $e \in \mathcal{E}$ for when it appears as the subject of a triple $\mathbf{e}_h \in \mathbb{R}^d$ and as the object of a triple $\mathbf{e}_t \in \mathbb{R}^d$. Similarly, two representations are learned for each relationship for a forward $\textbf{r}_{\rightarrow}$ and backward triple $\textbf{r}_{\leftarrow}$. The score is then obtained by averaging the *forward* and the *backward* interaction function value: .. math:: \frac{ f(\textbf{h}_{h}, \textbf{r}_{\rightarrow}, \textbf{t}_{t}) + f(\textbf{t}_{h}, \textbf{r}_{\leftarrow}, \textbf{h}_{t}) }{2} Where ``f`` is the interaction model used. If :class:`pykeen.nn.modules.DistMultInteraction` is used, then this becomes :class:`pykeen.nn.modules.SimplEInteraction`. .. todo:: can we generalize the type annotations for this from FloatTensor to HeadRepresentation, etc.? """ @update_docstring_with_resolver_keys(ResolverKey(name="base", resolver="interaction_resolver")) def __init__( self, base: LookupOrType[Interaction[FloatTensor, FloatTensor, FloatTensor]], base_kwargs: OptionalKwargs = None, ): """ Initialize the interaction module. :param base: the base interaction. :param base_kwargs: keyword-based parameters used to instantiate the base interaction """ super().__init__() self.base = interaction_resolver.make(base, base_kwargs)
[docs] def forward( self, h: tuple[FloatTensor, FloatTensor], r: tuple[FloatTensor, FloatTensor], t: tuple[FloatTensor, FloatTensor], ) -> FloatTensor: """Evaluate the interaction function. .. seealso:: :meth:`Interaction.forward <pykeen.nn.modules.Interaction.forward>` for a detailed description about the generic batched form of the interaction function. :param h: shape: ``(*batch_dims, d)`` and ``(*batch_dims, d)`` The head representations. :param r: shape: ``(*batch_dims, d)`` and ``(*batch_dims, d)`` The relation representations. :param t: shape: ``(*batch_dims, d)`` and ``(*batch_dims, d)`` The tail representations. :return: shape: ``batch_dims`` The scores. """ h_fwd, h_bwd = h r_fwd, r_bwd = r t_fwd, t_bwd = t return 0.5 * (self.base(h_fwd, r_fwd, t_fwd) + self.base(t_bwd, r_bwd, h_bwd))
[docs] @parse_docdata class SimplEInteraction(DirectionAverageInteraction): r"""The SimplE interaction function. SimplE can be regarded as extension of (a special case of) :class:`pykeen.nn.modules.CPInteraction`, an early tensor factorization approach in which each entity $e \in \mathcal{E}$ is represented by two vectors $\mathbf{e}_h, \mathbf{e}_t \in \mathbb{R}^d$ and each relation by a single vector $\mathbf{r} \in \mathbb{R}^d$. Depending whether an entity participates in a triple as the head or tail entity, either $\mathbf{e}_h$ or $\mathbf{e}_t$ is used. Both entity representations are learned independently, i.e. observing a triple $(h,r,t)$, the method only updates $\mathbf{h}_h$ and $\mathbf{t}_t$. In contrast to :class:`~pykeen.nn.modules.CPInteraction`, SimplE introduces separate weights for each relation: $\textbf{r}_{\rightarrow}$ and $\textbf{r}_{\leftarrow}$ for the inverse relation. The interaction model is based on both: .. math:: \frac{1}{2}\left( \left\langle\textbf{h}_{h}, \textbf{r}_{\rightarrow}, \textbf{t}_{t}\right\rangle + \left\langle\textbf{t}_{h}, \textbf{r}_{\leftarrow}, \textbf{h}_{t}\right\rangle \right) --- citation: author: Kazemi year: 2018 link: https://papers.nips.cc/paper/7682-simple-embedding-for-link-prediction-in-knowledge-graphs github: Mehran-k/SimplE """ entity_shape = ("d", "d") relation_shape = ("d", "d") def __init__(self): """Initialize the interaction module.""" super().__init__(DistMultInteraction)
[docs] @parse_docdata class PairREInteraction(NormBasedInteraction[FloatTensor, tuple[FloatTensor, FloatTensor], FloatTensor]): r"""The state-less norm-based PairRE interaction function. It is given by .. math :: -\|\mathbf{h} \odot \mathbf{r}_h - \mathbf{t} \odot \mathbf{r}_t \| where $\mathbf{h}, \mathbf{r}_h, \mathbf{r}_t, \mathbf{t} \in \mathbb{R}$ are representations for head entity, relation-specific head projection, relation-specific tail projection, and tail entity, respectively. .. note :: :class:`pykeen.models.PairRE` additionally enforces $\|\mathbf{h}\| = \|\mathbf{t}\| = 1$. --- citation: author: Chao year: 2020 link: http://arxiv.org/abs/2011.03798 arxiv: 2011.03798 github: alipay/KnowledgeGraphEmbeddingsViaPairedRelationVectors_PairRE """ relation_shape = ("d", "d")
[docs] def forward(self, h: FloatTensor, r: tuple[FloatTensor, FloatTensor], t: FloatTensor) -> FloatTensor: """Evaluate the interaction function. .. seealso:: :meth:`Interaction.forward <pykeen.nn.modules.Interaction.forward>` for a detailed description about the generic batched form of the interaction function. :param h: shape: ``(*batch_dims, d)`` The head representations. :param r: shape: ``(*batch_dims, d)`` and ``(*batch_dims, d)`` The relation representations. :param t: shape: ``(*batch_dims, d)`` The tail representations. :return: shape: ``batch_dims`` The scores. """ r_h, r_t = r return negative_norm_of_sum( h * r_h, -t * r_t, p=self.p, power_norm=self.power_norm, )
[docs] @parse_docdata class QuatEInteraction(Interaction[FloatTensor, FloatTensor, FloatTensor]): r"""The state-less QuatE interaction function. It is given as .. math :: \langle \mathbf{h} \otimes \mathbf{r}, \mathbf{t} \rangle where $\mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{H}^d$ are quanternion representations, $\otimes$ denotes the Hamilton product, and $\langle \cdot, \cdot \rangle$ the inner product. .. warning :: In order to representation a rotation, $\mathbf{r}$ must be normalized to unit length, cf. :func:`pykeen.nn.quaternion.normalize`. .. seealso:: - https://en.wikipedia.org/wiki/Quaternion --- citation: author: Zhang year: 2019 arxiv: 1904.10281 link: https://arxiv.org/abs/1904.10281 github: cheungdaven/quate """ # with k=4 entity_shape: Sequence[str] = ("dk",) relation_shape: Sequence[str] = ("dk",) def __init__(self) -> None: """Initialize the interaction module.""" super().__init__() self.register_buffer(name="table", tensor=quaternion.multiplication_table())
[docs] def forward(self, h: FloatTensor, r: tuple[FloatTensor, FloatTensor], t: FloatTensor) -> FloatTensor: """Evaluate the interaction function of QuatE for given embeddings. The embeddings have to be in a broadcastable shape. .. seealso:: :meth:`Interaction.forward <pykeen.nn.modules.Interaction.forward>` for a detailed description about the generic batched form of the interaction function. :param h: shape: (`*batch_dims`, dim, 4) The head representations. :param r: shape: (`*batch_dims`, dim, 4) The head representations. :param t: shape: (`*batch_dims`, dim, 4) The tail representations. :return: shape: (...) The scores. """ # TODO: this sign is in the official code, too, but why do we need it? # note: this is a fused kernel for computing the Hamilton product and the inner product at once return -einsum("...di, ...dj, ...dk, ijk -> ...", h, r, t, self.table)
[docs] class MonotonicAffineTransformationInteraction( Interaction[ HeadRepresentation, RelationRepresentation, TailRepresentation, ], ): r""" An adapter of interaction functions which adds a scalar (trainable) monotonic affine transformation of the score. .. math :: score(h, r, t) = \alpha \cdot score'(h, r, t) + \beta This adapter is useful for losses such as BCE, where there is a fixed decision threshold, or margin-based losses, where the margin is not be treated as hyper-parameter, but rather a trainable parameter. This is particularly useful, if the value range of the score function is not known in advance, and thus choosing an appropriate margin becomes difficult. Monotonicity is required to preserve the ordering of the original scoring function, and thus ensures that more plausible triples are still more plausible after the transformation. For example, we can add a bias to a distance-based interaction function to enable positive values: >>> base = TransEInteraction(p=2) >>> interaction = MonotonicAffineTransformationInteraction(base=base, trainable_bias=True, trainable_scale=False) When combined with BCE loss, we can geometrically think about predicting a (soft) sphere at :math:`h + r` with radius equal to the bias of the transformation. When we add a trainable scale, the model can control the "softness" of the decision boundary itself. """ def __init__( self, base: Interaction[HeadRepresentation, RelationRepresentation, TailRepresentation], initial_bias: float = 0.0, trainable_bias: bool = True, initial_scale: float = 1.0, trainable_scale: bool = True, ): """ Initialize the interaction. :param base: The base interaction. :param initial_bias: The initial value for the bias. :param trainable_bias: Whether the bias should be trainable. :param initial_scale: >0 The initial value for the scale. Must be strictly positive. :param trainable_scale: Whether the scale should be trainable. """ super().__init__() # the base interaction self.base = base # forward entity/relation shapes self.entity_shape = base.entity_shape self.relation_shape = base.relation_shape self._head_indices = base._head_indices self._tail_indices = base._tail_indices # The parameters of the affine transformation: bias self.bias = nn.Parameter(torch.empty(size=tuple()), requires_grad=trainable_bias) self.initial_bias = torch.as_tensor(data=[initial_bias], dtype=torch.get_default_dtype()).squeeze() # scale. We model this as log(scale) to ensure scale > 0, and thus monotonicity self.log_scale = nn.Parameter(torch.empty(size=tuple()), requires_grad=trainable_scale) self.initial_log_scale = torch.as_tensor( data=[math.log(initial_scale)], dtype=torch.get_default_dtype(), ).squeeze() # docstr-coverage: inherited
[docs] def reset_parameters(self): # noqa: D102 self.bias.data = self.initial_bias.to(device=self.bias.device) self.log_scale.data = self.initial_log_scale.to(device=self.bias.device)
# docstr-coverage: inherited
[docs] def forward( self, h: HeadRepresentation, r: RelationRepresentation, t: TailRepresentation, ) -> FloatTensor: # noqa: D102 return self.log_scale.exp() * self.base(h=h, r=r, t=t) + self.bias
[docs] @parse_docdata class CrossEInteraction(Interaction[FloatTensor, tuple[FloatTensor, FloatTensor], FloatTensor]): r"""The stateful interaction function of CrossE. The interaction function is given by .. math :: \textit{drop}( \textit{act}( \mathbf{c}_r \odot \mathbf{h} + \mathbf{c}_r \odot \mathbf{h} \odot \mathbf{r} + \mathbf{b}) ) )^T \mathbf{t} where $\mathbf{h}, \mathbf{c}_r, \mathbf{r}, \mathbf{t} \in \mathbb{R}^d$ is the head embedding, the relation interaction vector, the relation embedding, and the tail embedding, respectively. $\mathbf{b} \in \mathbb{R}^d$ is a global bias vector (which makes this interaction function stateful). $\textit{drop}$ denotes dropout, and $\textit{act}$ is the activation function. .. note :: The CrossE paper describes an additional sigmoid activation as part of the interaction function. Since using a log-likelihood loss can cause numerical problems (due to explicitly calling sigmoid before log), we do not use it in our implementation, but opt for the numerically stable variant. However, the model itself has an option ``predict_with_sigmoid``, which can be used to force the use of sigmoid during inference. This can also affect rank-based scoring, since limited numerical precision can lead to exactly equal scores for multiple choices. The definition of a rank is not clear in this case, and there are several competing ways to break ties. See :ref:`understanding-evaluation` for more information. --- citation: author: Zhang year: 2019 link: https://arxiv.org/abs/1903.04750 arxiv: 1903.04750 github: https://github.com/wencolani/CrossE """ relation_shape = ("d", "d") @update_docstring_with_resolver_keys( ResolverKey("combination_activation", "class_resolver.contrib.torch.activation_resolver") ) def __init__( self, embedding_dim: int = 50, combination_activation: HintOrType[nn.Module] = nn.Tanh, combination_activation_kwargs: Mapping[str, Any] | None = None, combination_dropout: float | None = 0.5, ): """ Instantiate the interaction module. :param embedding_dim: The embedding dimension. :param combination_activation: The combination activation function. :param combination_activation_kwargs: Additional keyword-based arguments passed to the constructor of the combination activation function (if not already instantiated). :param combination_dropout: An optional dropout applied after the combination and before the dot product similarity. """ super().__init__() self.activation = activation_resolver.make( combination_activation, pos_kwargs=combination_activation_kwargs, ) # TODO: expose initialization? self.bias = nn.Parameter(data=torch.zeros(embedding_dim)) self.dropout = nn.Dropout(combination_dropout) if combination_dropout else None
[docs] def forward( self, h: FloatTensor, r: tuple[FloatTensor, FloatTensor], t: FloatTensor, ) -> FloatTensor: r""" Evaluate the interaction function. .. seealso:: :meth:`Interaction.forward <pykeen.nn.modules.Interaction.forward>` for a detailed description about the generic batched form of the interaction function. :param h: shape: (`*batch_dims`, dim) The head representations. :param r: shape: (`*batch_dims`, dim) The relation representations and relation-specific interaction vector. :param t: shape: (`*batch_dims`, dim) The tail representations. :return: shape: batch_dims The scores. """ r_emb, c_r = r # head interaction h = c_r * h # relation interaction (notice that h has been updated) r_emb = h * r_emb # combination x = self.activation(self.bias.view(*make_ones_like(h.shape[:-1]), -1) + h + r_emb) if self.dropout is not None: x = self.dropout(x) # similarity return batched_dot(x, t)
[docs] @parse_docdata class BoxEInteraction( NormBasedInteraction[ tuple[FloatTensor, FloatTensor], tuple[FloatTensor, FloatTensor, FloatTensor, FloatTensor, FloatTensor, FloatTensor], tuple[FloatTensor, FloatTensor], ] ): r""" The BoxE interaction from [abboud2020]_. Entities are represented by two $d$-dimensional vectors describing the *base position* as well as the *translational bump*, which translates all the entities co-occuring in a fact with this entity from their base positions to their final embeddings, called "bumping". Relations are represented as a fixed number of hyper-rectangles corresponding to the relation's arity. Since we are only considering single-hop link predition here, the arity is always two, i.e., one box for the head position and another one for the tail position. There are different possibilities to parametrize a hyper-rectangle, where the most common may be its description as the coordinate of to opposing vertices. BoxE suggests a different parametrization for each box by - a base position given by its center, a $d$-dimensional vector $\mathbf{c} \in \mathbb{R}^d$ - an extent in each dimension. This size is further factored in - a scalar global scalar scaling factor, $s \in \mathbb{R}$ - a normalized extent in each dimension, i.e., the extents sum to one, given as $\mathbf{e} \in \mathbb{R}^d$, with $\|\mathbf{e}\| = 1$ and $0 \leq \mathbf{e}_i$ for all $i$. --- citation: author: Abboud year: 2020 link: https://arxiv.org/abs/2007.06267 github: ralphabb/BoxE """ relation_shape = ("d", "d", "s", "d", "d", "s") # Boxes are 2xd (size) each, x 2 sets of boxes: head and tail entity_shape = ("d", "d") # Base position and bump def __init__(self, tanh_map: bool = True, p: int = 2, power_norm: bool = False): r""" Instantiate the interaction module. .. seealso:: The parameter ``p`` and ``power_norm`` are directly passed to :class:`~pykeen.nn.modules.NormBasedInteraction`. :param tanh_map: Whether to use tanh mapping after BoxE computation (defaults to true). The hyperbolic tangent mapping restricts the embedding space to the range [-1, 1], and thus this map implicitly regularizes the space to prevent loss reduction by growing boxes arbitrarily large. :param p: The norm used with :func:`torch.linalg.vector_norm`. Typically is 1 or 2. :param power_norm: Whether to use the p-th power of the $L_p$ norm. It has the advantage of being differentiable around 0, and numerically more stable. """ super().__init__(p=p, power_norm=power_norm) self.tanh_map = tanh_map
[docs] def forward( self, h: tuple[FloatTensor, FloatTensor], r: tuple[FloatTensor, FloatTensor, FloatTensor, FloatTensor, FloatTensor, FloatTensor], t: tuple[FloatTensor, FloatTensor], ) -> FloatTensor: """Evaluate the interaction function. .. seealso:: :meth:`Interaction.forward <pykeen.nn.modules.Interaction.forward>` for a detailed description about the generic batched form of the interaction function. :param h: shape: ``(*batch_dims, d)`` and ``(*batch_dims, d)`` The head representations. :param r: shape: ``(*batch_dims, d)``, ``(*batch_dims, d)``, ``(*batch_dims, s)``, ``(*batch_dims, d)``, ``(*batch_dims, d)``, and ``(*batch_dims, s)`` The relation representations. :param t: shape: ``(*batch_dims, d)`` and ``(*batch_dims, d)`` The tail representations. :return: shape: ``batch_dims`` The scores. """ # relation box head; relation box tail rh_base, rh_delta, rh_size, rt_base, rt_delta, rt_size = r # head position and bump h_pos, h_bump = h # tail position and bump t_pos, t_bump = t # head score return BoxEInteraction.boxe_kg_arity_position_score( # head box score entity_pos=h_pos, other_entity_bump=t_bump, relation_box=BoxEInteraction.compute_box(base=rh_base, delta=rh_delta, size=rh_size), tanh_map=self.tanh_map, p=self.p, power_norm=self.power_norm, ) + BoxEInteraction.boxe_kg_arity_position_score( # tail box score entity_pos=t_pos, other_entity_bump=h_bump, relation_box=BoxEInteraction.compute_box(base=rt_base, delta=rt_delta, size=rt_size), tanh_map=self.tanh_map, p=self.p, power_norm=self.power_norm, )
[docs] @staticmethod def product_normalize(x: FloatTensor, dim: int = -1) -> FloatTensor: r"""Normalize a tensor along a given dimension so that the geometric mean is 1.0. :param x: shape: s An input tensor :param dim: the dimension along which to normalize the tensor :return: shape: s An output tensor where the given dimension is normalized to have a geometric mean of 1.0. """ return x / at_least_eps(at_least_eps(x.abs()).log().mean(dim=dim, keepdim=True).exp())
[docs] @staticmethod def point_to_box_distance( points: FloatTensor, box_lows: FloatTensor, box_highs: FloatTensor, ) -> FloatTensor: r"""Compute the point to box distance function proposed by [abboud2020]_ in an element-wise fashion. :param points: shape: ``(*, d)`` the positions of the points being scored against boxes :param box_lows: shape: ``(*, d)`` the lower corners of the boxes :param box_highs: shape: ``(*, d)`` the upper corners of the boxes :returns: Element-wise distance function scores as per the definition above Given points $p$, box_lows $l$, and box_highs $h$, the following quantities are defined: - Width $w$ is the difference between the upper and lower box bound: $w = h - l$ - Box centers $c$ are the mean of the box bounds: $c = (h + l) / 2$ Finally, the point to box distance $dist(p,l,h)$ is defined as the following piecewise function: .. math:: dist(p,l,h) = \begin{cases} |p-c|/(w+1) & l <= p <+ h \\ |p-c|*(w+1) - 0.5*w*((w+1)-1/(w+1)) & otherwise \\ \end{cases} """ widths = box_highs - box_lows # compute width plus 1 widths_p1 = widths + 1 # compute box midpoints # TODO: we already had this before, as `base` centres = 0.5 * (box_lows + box_highs) return torch.where( # inside box? torch.logical_and(points >= box_lows, points <= box_highs), # yes: |p - c| / (w + 1) torch.abs(points - centres) / widths_p1, # no: (w + 1) * |p - c| - 0.5 * w * (w - 1/(w + 1)) widths_p1 * torch.abs(points - centres) - (0.5 * widths) * (widths_p1 - 1 / widths_p1), )
[docs] @classmethod def boxe_kg_arity_position_score( cls, entity_pos: FloatTensor, other_entity_bump: FloatTensor, relation_box: tuple[FloatTensor, FloatTensor], tanh_map: bool, p: int, power_norm: bool, ) -> FloatTensor: r"""Perform the BoxE computation at a single arity position. .. note:: this computation is parallelizable across all positions .. note :: `entity_pos`, `other_entity_bump`, `relation_box_low` and `relation_box_high` have to be in broadcastable shape. :param entity_pos: shape: ``(*s_p, d)`` This is the base entity position of the entity appearing in the target position. For example, for a fact $r(h, t)$ and the head arity position, `entity_pos` is the base position of $h$. :param other_entity_bump: shape: ``(*s_b, d)`` This is the bump of the entity at the other position in the fact. For example, given a fact $r(h, t)$ and the head arity position, `other_entity_bump` is the bump of $t$. :param relation_box: shape: ``(*s_r, d)`` The lower/upper corner of the relation box at the target arity position. :param tanh_map: whether to apply the tanh map regularizer :param p: The norm used with :func:`torch.linalg.vector_norm`. Typically is 1 or 2. :param power_norm: Whether to use the p-th power of the $L_p$ norm. It has the advantage of being differentiable around 0, and numerically more stable. :return: shape: ``*s`` Arity-position score for the entity relative to the target relation box. Larger is better. The shape is the broadcasted shape from position, bump and box, where the last dimension has been removed. """ # Step 1: Apply the other entity bump bumped_representation = entity_pos + other_entity_bump relation_box_low, relation_box_high = relation_box # Step 2: Apply tanh if tanh_map is set to True. if tanh_map: relation_box_low = torch.tanh(relation_box_low) relation_box_high = torch.tanh(relation_box_high) bumped_representation = torch.tanh(bumped_representation) # Compute the distance function output element-wise element_wise_distance = cls.point_to_box_distance( points=bumped_representation, box_lows=relation_box_low, box_highs=relation_box_high, ) # Finally, compute the norm return negative_norm(element_wise_distance, p=p, power_norm=power_norm)
[docs] @classmethod def compute_box( cls, base: FloatTensor, delta: FloatTensor, size: FloatTensor, ) -> tuple[FloatTensor, FloatTensor]: r"""Compute the lower and upper corners of a resulting box. :param base: shape: ``(*, d)`` the base position (box center) of the input relation embeddings :param delta: shape: ``(*, d)`` the base shape of the input relation embeddings :param size: shape: ``(*, d)`` the size scalar vectors of the input relation embeddings :return: shape: ``(*, d)`` each lower and upper bounds of the box whose embeddings are provided as input. """ # Enforce that sizes are strictly positive by passing through ELU size_pos = torch.nn.functional.elu(size) + 1 # Shape vector is normalized using the above helper function delta_norm = cls.product_normalize(delta) # Size is learned separately and applied to normalized shape delta_final = size_pos * delta_norm # Compute potential boundaries by applying the shape in substraction first_bound = base - 0.5 * delta_final # and in addition second_bound = base + 0.5 * delta_final # Compute box upper bounds using min and max respectively box_low = torch.minimum(first_bound, second_bound) box_high = torch.maximum(first_bound, second_bound) return box_low, box_high
[docs] @parse_docdata class CPInteraction(Interaction[FloatTensor, FloatTensor, FloatTensor]): r""" The Canonical Tensor Decomposition interaction as described [lacroix2018]_ (originally from [hitchcock1927]_). The interaction function is given as .. math:: \sum_{1 \leq i \leq k, 1 \leq j \leq d} \mathbf{h}_{i, j} \cdot \mathbf{r}_{i, j} \cdot \mathbf{t}_{i, j} .. note :: For $k=1$, this interaction is the same as :class:`~pykeen.nn.modules.DistMultInteraction`. However, in contrast to :class:`~pykeen.models.DistMult`, entities should have different representations for the head and the tail role. --- name: Canonical Tensor Decomposition citation: author: Lacroix year: 2018 arxiv: 1806.07297 link: https://arxiv.org/abs/1806.07297 github: facebookresearch/kbc """ entity_shape = ("kd", "kd") relation_shape = ("kd",) _head_indices = (0,) _tail_indices = (1,)
[docs] def forward(self, h: FloatTensor, r: FloatTensor, t: FloatTensor) -> FloatTensor: r""" Evaluate the interaction function. .. seealso:: :meth:`Interaction.forward <pykeen.nn.modules.Interaction.forward>` for a detailed description about the generic batched form of the interaction function. :param h: shape: ``(*batch_dims, k, d)`` The head representations. :param r: shape: ``(*batch_dims, k, d)`` The relation representations. :param t: shape: ``(*batch_dims, k, d)`` The tail representations. :return: shape: ``batch_dims`` The scores. """ return einsum("...kd, ...kd, ...kd -> ...", h, r, t)
[docs] @parse_docdata class MultiLinearTuckerInteraction(Interaction[FloatTensor, FloatTensor, FloatTensor]): """ An implementation of the original (multi-linear) TuckER interaction as described [tucker1966]_. .. note :: For small tensors, there are more efficient algorithms to compute the decomposition, e.g., http://tensorly.org/stable/modules/generated/tensorly.decomposition.Tucker.html --- name: MultiLinearTucker citation: author: Tucker year: 1966 link: https://dx.doi.org/10.1007/BF02289464 """ entity_shape = ("d", "f") _head_indices = (0,) _tail_indices = (1,) relation_shape = ("e",) def __init__( self, head_dim: int = 64, relation_dim: int | None = None, tail_dim: int | None = None, ): """ Initialize the Tucker interaction function. :param head_dim: The head entity embedding dimension. :param relation_dim: The relation embedding dimension. Defaults to `head_dim`. :param tail_dim: The tail entity embedding dimension. Defaults to `head_dim`. """ super().__init__() # input normalization relation_dim = relation_dim or head_dim tail_dim = tail_dim or head_dim # Core tensor self.core_tensor = nn.Parameter( torch.empty(head_dim, relation_dim, tail_dim), requires_grad=True, ) # docstr-coverage: inherited
[docs] def reset_parameters(self): # noqa: D102 # initialize core tensor nn.init.normal_( self.core_tensor, mean=0, std=numpy.sqrt(numpy.prod(numpy.reciprocal(numpy.asarray(self.core_tensor.shape)))), )
[docs] def forward(self, h: FloatTensor, r: FloatTensor, t: FloatTensor) -> FloatTensor: r""" Evaluate the interaction function. .. seealso:: :meth:`Interaction.forward <pykeen.nn.modules.Interaction.forward>` for a detailed description about the generic batched form of the interaction function. :param h: shape: ``(*batch_dims, head_dim)`` The head representations. :param r: shape: ``(*batch_dims, relation_dim)`` The relation representations. :param t: shape: ``(*batch_dims, tail_dim)`` The tail representations. :return: shape: ``batch_dims`` The scores. """ return einsum("ijk, ...i, ...j, ...k -> ...", self.core_tensor, h, r, t)
[docs] @parse_docdata class TransformerInteraction(Interaction[FloatTensor, FloatTensor, FloatTensor]): r"""Transformer-based interaction, as described in [galkin2020]_. This interaction function is primarily designed to handle additional qualifier pairs found in hyper-relational statements, but can also be used for vanilla link prediction. It creates a $2$-element sequence of the head and relation representations, applies a learnable absolute position encoding, applies a Transformer encoder, and subsequently performs sum pooling along the sequence dimension and a final linear projection before determining scores by the dot product with the tail entity representation. Its interaction function is given by .. math :: \textit{Linear}(\textit{SumPooling}(\textit{Transformer}( [\mathbf{h} + \mathbf{pe}[0]; \mathbf{r} + \mathbf{pe}[1]] )))^T \mathbf{t} Since a computationally expensive operation is applied to the concatenated head and relation representations, and a cheap dot product is applied between this encoding and the tail representation, this interaction function is particularly well suited for $1:n$ evaluation of different tail entities for the same head-relation combination. --- name: Transformer citation: author: Galkin year: 2020 link: https://doi.org/10.18653/v1/2020.emnlp-main.596 """ def __init__( self, input_dim: int = 512, num_layers: int = 2, num_heads: int = 8, dropout: float = 0.1, dim_feedforward: int = 2048, position_initializer: HintOrType[Initializer] = xavier_normal_, ): """ Initialize the module. :param input_dim: >0 The input dimension. :param num_layers: >0 The number of Transformer layers, cf. :class:`torch.nn.TransformerEncoder`. :param num_heads: >0 The number of self-attention heads inside each transformer encoder layer, cf. :class:`nn.TransformerEncoderLayer`. :param dropout: The dropout rate on each transformer encoder layer, cf. :class:`torch.nn.TransformerEncoderLayer`. :param dim_feedforward: The hidden dimension of the feed-forward layers of the transformer encoder layer, cf. :class:`torch.nn.TransformerEncoderLayer`. :param position_initializer: The initializer to use for positional embeddings. """ super().__init__() self.transformer = nn.TransformerEncoder( encoder_layer=nn.TransformerEncoderLayer( d_model=input_dim, nhead=num_heads, dim_feedforward=dim_feedforward, dropout=dropout, ), num_layers=num_layers, ) self.position_embeddings = nn.Parameter(position_initializer(torch.empty(2, input_dim))) self.final = nn.Linear(input_dim, input_dim, bias=True)
[docs] def forward(self, h: FloatTensor, r: FloatTensor, t: FloatTensor) -> FloatTensor: """Evaluate the interaction function. .. seealso:: :meth:`Interaction.forward <pykeen.nn.modules.Interaction.forward>` for a detailed description about the generic batched form of the interaction function. :param h: shape: ``(*batch_dims, d)`` The head representations. :param r: shape: ``(*batch_dims, d)`` The relation representations. :param t: shape: ``(*batch_dims, d)`` The tail representations. :return: shape: ``batch_dims`` The scores. """ # stack h & r (+ broadcast) => shape: (2, *batch_dims, dim) x = torch.stack(torch.broadcast_tensors(h, r), dim=0) # remember shape for output, but reshape for transformer to (2, prod(batch_dims), dim) hr_shape = x.shape x = x.view(2, -1, hr_shape[-1]) # get position embeddings, shape: (seq_len, dim) # Now we are position-dependent w.r.t qualifier pairs. x = x + self.position_embeddings.unsqueeze(dim=1) # seq_length, batch_size, dim x = self.transformer(src=x) # Pool output along sequence dimension, (prod(batch_dims), dim) x = x.sum(dim=0) # output shape: (prod(batch_dims), dim) x = self.final(x) # reshape x = x.view(*hr_shape[1:-1], x.shape[-1]) return batched_dot(x, t)
[docs] @parse_docdata class TripleREInteraction(NormBasedInteraction[FloatTensor, tuple[FloatTensor, FloatTensor, FloatTensor], FloatTensor]): r"""The TripleRE interaction function from [yu2021]_. It is given by .. math :: \mathbf{h} \odot (\mathbf{r}_h + u) - \mathbf{t} \odot (\mathbf{r}_t + u) + \mathbf{r} with head entity, relation and tail entity representations $\mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{R}^d$, relation specific head and tail multipliers $\mathbf{r}_h, \mathbf{r}_t \in \mathbb{R}^d$, and a scalar relation factor offset $u \in \mathbb{R}$. .. note :: This interaction is equivalent to :class:`~pykeen.nn.modules.LineaREInteraction` except the $u$ term. The $u$ is only non-zero for the version 2 from the paper. .. note :: For equivalence to the paper version, `h` and `t` should be normalized to unit Euclidean length, and `p` and `power_norm` be kept at their default values. .. seealso:: https://github.com/LongYu-360/TripleRE-Add-NodePiece --- name: TripleRE citation: author: Yu year: 2021 link: https://vixra.org/abs/2112.0095 """ # r_head, r_mid, r_tail relation_shape = ("d", "d", "d") def __init__(self, u: float | None = 1.0, p: int = 1, power_norm: bool = False): """ Initialize the module. .. seealso:: The parameter ``p`` and ``power_norm`` are directly passed to :class:`~pykeen.nn.modules.NormBasedInteraction`. :param u: The relation factor offset. Can be set to `None` (or 0) to disable it. :param p: The norm used with :func:`torch.linalg.vector_norm`. Typically is 1 or 2. :param power_norm: Whether to use the p-th power of the $L_p$ norm. It has the advantage of being differentiable around 0, and numerically more stable. """ super().__init__(p=p, power_norm=power_norm) self.u = u
[docs] def forward(self, h: FloatTensor, r: tuple[FloatTensor, FloatTensor, FloatTensor], t: FloatTensor) -> FloatTensor: """Evaluate the interaction function. .. seealso:: :meth:`Interaction.forward <pykeen.nn.modules.Interaction.forward>` for a detailed description about the generic batched form of the interaction function. :param h: shape: ``(*batch_dims, d)`` The head representations. :param r: shape: ``(*batch_dims, d)``, 3 times The relation representations. :param t: shape: ``(*batch_dims, d)`` The tail representations. :return: shape: ``batch_dims`` The scores. """ u = self.u r_head, r_mid, r_tail = r # note: normalization should be done from the representations # cf. https://github.com/LongYu-360/TripleRE-Add-NodePiece/blob/994216dcb1d718318384368dd0135477f852c6a4/TripleRE%2BNodepiece/ogb_wikikg2/model.py#L317-L328 # noqa: E501 # version 2 if u is not None: # r_head = r_head + u * torch.ones_like(r_head) # r_tail = r_tail + u * torch.ones_like(r_tail) r_head = r_head + u r_tail = r_tail + u return negative_norm_of_sum(h * r_head, -t * r_tail, r_mid, p=self.p, power_norm=self.power_norm)
# type alias for AutoSF block description # head_index, relation_index, tail_index, sign AutoSFBlock = tuple[int, int, int, Sign]
[docs] @parse_docdata class AutoSFInteraction(Interaction[HeadRepresentation, RelationRepresentation, TailRepresentation]): r""" The AutoSF interaction as described by [zhang2020]_. This interaction function is a parametrized way to express bi-linear models with block structure. It divides the entity and relation representations into blocks, and expresses the interaction as a sequence of 4-tuples $(i_h, i_r, i_t, s)$, where $i_h, i_r, i_t$ index a _block_ of the head, relation, or tail representation, and $s \in {-1, 1}$ is the sign. The interaction function is then given as .. math:: \sum_{(i_h, i_r, i_t, s) \in \mathcal{C}} s \cdot \langle h[i_h], r[i_r], t[i_t] \rangle where $\langle \cdot, \cdot, \cdot \rangle$ denotes the tri-linear dot product. This parametrization allows to express several well-known interaction functions, e.g. - :class:`pykeen.nn.DistMultInteraction`: one block, $\mathcal{C} = \{(0, 0, 0, 1)\}$ - :class:`pykeen.nn.ComplExInteraction`: two blocks, $\mathcal{C} = \{(0, 0, 0, 1), (0, 1, 1, 1), (1, 0, 1, -1), (1, 0, 1, 1)\}$ - :class:`pykeen.nn.SimplEInteraction`: two blocks: $\mathcal{C} = \{(0, 0, 1, 1), (1, 1, 0, 1)\}$ While in theory, we can have up to `num_blocks**3` unique triples, usually, a smaller number is preferable to have some sparsity. --- citation: author: Zhang year: 2020 arxiv: 1904.11682 link: https://arxiv.org/abs/1904.11682 github: AutoML-Research/AutoSF """ #: a description of the block structure coefficients: tuple[AutoSFBlock, ...] @staticmethod def _check_coefficients( coefficients: Collection[AutoSFBlock], num_entity_representations: int, num_relation_representations: int ): """Check coefficients. :param coefficients: the block description :param num_entity_representations: the number of entity representations / blocks :param num_relation_representations: the number of relation representations / blocks :raises ValueError: if there are duplicate coefficients """ counter = Counter(coef[:3] for coef in coefficients) duplicates = {k for k, v in counter.items() if v > 1} if duplicates: raise ValueError(f"Cannot have duplicates in coefficients! Duplicate entries for {duplicates}") for entities, num_blocks in ((True, num_entity_representations), (False, num_relation_representations)): missing_ids = set(range(num_blocks)).difference( AutoSFInteraction._iter_ids(coefficients, entities=entities) ) if missing_ids: label = "entity" if entities else "relation" logger.warning(f"Unused {label} blocks: {missing_ids}. This may indicate an error.") @staticmethod def _iter_ids(coefficients: Collection[AutoSFBlock], entities: bool) -> Iterable[int]: """Iterate over selected parts of the blocks. :param coefficients: the block coefficients :param entities: whether to select entity or relation ids, i.e., components `(0, 2)` for entities, or `(1,)` for relations. :yields: the used indices """ indices = (0, 2) if entities else (1,) yield from itt.chain.from_iterable(map(itemgetter(i), coefficients) for i in indices) @staticmethod def _infer_number(coefficients: Collection[AutoSFBlock], entities: bool) -> int: """Infer the number of blocks from the given coefficients. :param coefficients: the block coefficients :param entities: whether to select entity or relation ids, i.e., components `(0, 2)` for entities, or `(1,)` for relations. :return: the inferred number of blocks """ return 1 + max(AutoSFInteraction._iter_ids(coefficients, entities=entities)) def __init__( self, coefficients: Iterable[AutoSFBlock], *, num_blocks: int | None = None, num_entity_representations: int | None = None, num_relation_representations: int | None = None, ) -> None: """ Initialize the interaction function. :param coefficients: the coefficients for the individual blocks, cf. :class:`pykeen.nn.AutoSFInteraction` :param num_blocks: the number of blocks. If given, will be used for both, entity and relation representations. :param num_entity_representations: an explicit number of entity representations / blocks. Only used if `num_blocks` is `None`. If `num_entity_representations` is `None`, too, this number if inferred from `coefficients`. :param num_relation_representations: an explicit number of relation representations / blocks. Only used if `num_blocks` is `None`. If `num_relation_representations` is `None`, too, this number if inferred from `coefficients`. """ super().__init__() # convert to tuple coefficients = tuple(coefficients) # infer the number of entity and relation representations num_entity_representations = ( num_blocks or num_entity_representations or self._infer_number(coefficients, entities=True) ) num_relation_representations = ( num_blocks or num_relation_representations or self._infer_number(coefficients, entities=False) ) # verify coefficients self._check_coefficients( coefficients=coefficients, num_entity_representations=num_entity_representations, num_relation_representations=num_relation_representations, ) self.coefficients = coefficients # dynamic entity / relation shapes self.entity_shape = tuple(["d"] * num_entity_representations) self.relation_shape = tuple(["d"] * num_relation_representations)
[docs] @classmethod def from_searched_sf(cls, coefficients: Sequence[int], **kwargs) -> AutoSFInteraction: """ Instantiate AutoSF interaction from the "official" serialization format. > The first 4 values (a,b,c,d) represent h_1 * r_1 * t_a + h_2 * r_2 * t_b + h_3 * r_3 * t_c + h_4 * r_4 * t_d. > For the others, every 4 values represent one adding block: index of r, index of h, index of t, the sign s. :param coefficients: the coefficients in the "official" serialization format. :param kwargs: additional keyword-based parameters passed to :meth:`pykeen.nn.AutoSFInteraction.__init__` :return: An AutoSF interaction module .. seealso:: https://github.com/AutoML-Research/AutoSF/blob/07b7243ccf15e579176943c47d6e65392cd57af3/searched_SFs.txt """ return cls( coefficients=[(i, ri, i, 1) for i, ri in enumerate(coefficients[:4])] + [(hi, ri, ti, s) for ri, hi, ti, s in more_itertools.chunked(coefficients[4:], 4)], **kwargs, )
[docs] def forward(self, h: HeadRepresentation, r: RelationRepresentation, t: TailRepresentation) -> FloatTensor: """Evaluate the interaction function. .. seealso:: :meth:`Interaction.forward <pykeen.nn.modules.Interaction.forward>` for a detailed description about the generic batched form of the interaction function. :param h: shape: ``(*batch_dims, d)`` The head representations. :param r: shape: ``(*batch_dims, d)`` The relation representations. :param t: shape: ``(*batch_dims, d)`` The tail representations. :return: shape: ``batch_dims`` The scores. """ hl, rl, tl = ensure_tuple(h, r, t) return sum(sign * tensor_product(hl[hi], rl[ri], tl[ti]).sum(dim=-1) for hi, ri, ti, sign in self.coefficients)
[docs] def extend(self, *new_coefficients: tuple[int, int, int, Sign]) -> AutoSFInteraction: """Extend AutoSF function, as described in the greedy search algorithm in the paper.""" return AutoSFInteraction(coefficients=self.coefficients + tuple(new_coefficients))
[docs] def latex_visualize(self) -> str: """Create the LaTeX + tikz visualization as shown in the paper.""" n = len(self.entity_shape) return "\n".join( [ r"\begin{tikzpicture}[yscale=-1]", rf"\draw (0, 0) grid ({n}, {n});", ] + [ rf"\draw ({ti}.5, {hi}.5) node {{${'-' if s < 0 else ''}D^r_{{{ri + 1}}}$}};" for hi, ri, ti, s in self.coefficients ] + [ r"\end{tikzpicture}", ], )
[docs] @parse_docdata class LineaREInteraction(NormBasedInteraction[FloatTensor, tuple[FloatTensor, FloatTensor, FloatTensor], FloatTensor]): r""" The LineaRE interaction described by [peng2020]_. It is given by .. math :: \mathbf{h} \odot \mathbf{r}_h - \mathbf{t} \odot \mathbf{r}_t + \mathbf{r} where $\mathbf{r}_{h}, \mathbf{r}, \mathbf{r}_{t} \in \mathbb{R}^d$ are relation-specific terms, and $\mathbf{h}, \mathbf{t} \in \mathbb{R}^n$ the head and tail entity representation. .. note :: the original paper only describes the interaction for $L_1$ norm, but we extend it to the general $L_p$ norm as well as its powered variant. .. note :: This interaction is equivalent to :class:`TripleREInteraction` without the $u$ term. --- name: LineaRE citation: author: Peng year: 2020 arxiv: 2004.10037 github: pengyanhui/LineaRE link: https://arxiv.org/abs/2004.10037 """ # r_head, r_bias, r_tail relation_shape = ("d", "d", "d")
[docs] def forward(self, h: FloatTensor, r: tuple[FloatTensor, FloatTensor, FloatTensor], t: FloatTensor) -> FloatTensor: """Evaluate the interaction function. .. seealso:: :meth:`Interaction.forward <pykeen.nn.modules.Interaction.forward>` for a detailed description about the generic batched form of the interaction function. :param h: shape: ``(*batch_dims, d)`` The head representations. :param r: shape: ``(*batch_dims, d)``, 3 times The relation representations. :param t: shape: ``(*batch_dims, d)`` The tail representations. :return: shape: ``batch_dims`` The scores. """ r_head, r_mid, r_tail = r return negative_norm_of_sum(h * r_head, -t * r_tail, r_mid, p=self.p, power_norm=self.power_norm)
#: A resolver for stateful interaction functions interaction_resolver: ClassResolver[Interaction] = ClassResolver.from_subclasses( Interaction, skip={ NormBasedInteraction, MonotonicAffineTransformationInteraction, ClampedInteraction, DirectionAverageInteraction, }, default=TransEInteraction, )