CrossE
- class CrossE(*, embedding_dim: int = 50, combination_activation: str | ~torch.nn.modules.module.Module | type[~torch.nn.modules.module.Module] | None = <class 'torch.nn.modules.activation.Tanh'>, combination_activation_kwargs: ~collections.abc.Mapping[str, ~typing.Any] | None = None, combination_dropout: float | None = 0.5, entity_initializer: str | ~typing.Callable[[~torch.Tensor], ~torch.Tensor] | None = <function xavier_uniform_>, relation_initializer: str | ~typing.Callable[[~torch.Tensor], ~torch.Tensor] | None = <function xavier_uniform_>, relation_interaction_initializer: str | ~typing.Callable[[~torch.Tensor], ~torch.Tensor] | None = <function xavier_uniform_>, **kwargs)[source]
Bases:
ERModel
[FloatTensor
,tuple
[FloatTensor
,FloatTensor
],FloatTensor
]An implementation of CrossE from [zhang2019b].
CrossE represents each entity by a \(d\)-dimensional vector. Relations are represented by two \(d\)-dimensional vectors, one of which is a regular embedding vector, while the other is relation-specific interaction vector. All are stored in
Embedding
. On top of that,CrossEInteraction
is used to get the scores.Initialize the model.
- Parameters:
embedding_dim (int) – The entity and relation embedding dimension \(d\). Defaults to 50.
combination_activation (str | Module | type[Module] | None) – The combination activation function.
combination_activation_kwargs (Mapping[str, Any] | None) – Additional keyword-based arguments passed to the constructor of the combination activation function (if not already instantiated).
combination_dropout (float | None) – An optional dropout applied after the combination and before the dot product similarity.
entity_initializer (str | Callable[[Tensor], Tensor] | None) – Entity initializer function.
relation_initializer (str | Callable[[Tensor], Tensor] | None) – Relation embedding initializer function.
relation_interaction_initializer (str | Callable[[Tensor], Tensor] | None) – Relation interaction vector initializer function.
kwargs – Remaining keyword arguments passed through to
ERModel
.
Note
The parameter pair
(combination_activation, combination_activation_kwargs)
is used forclass_resolver.contrib.torch.activation_resolver
An explanation of resolvers and how to use them is given in https://class-resolver.readthedocs.io/en/latest/.
Attributes Summary
The default strategy for optimizing the model's hyper-parameters
Attributes Documentation