SE
- class SE(*, embedding_dim: int = 50, scoring_fct_norm: int = 1, power_norm: bool = False, entity_initializer: str | ~typing.Callable[[~torch.Tensor], ~torch.Tensor] | None = <function xavier_uniform_>, entity_constrainer: str | ~typing.Callable[[~torch.Tensor], ~torch.Tensor] | None = <function normalize>, entity_constrainer_kwargs: ~collections.abc.Mapping[str, ~typing.Any] | None = None, relation_initializer: str | ~typing.Callable[[~torch.Tensor], ~torch.Tensor] | None = <pykeen.utils.compose object>, **kwargs)[source]
Bases:
ERModel
[Tensor
,tuple
[Tensor
,Tensor
],Tensor
]An implementation of the Structured Embedding (SE) published by [bordes2011].
This model represents entities as \(d\)-dimensional vectors, and relations by two projection matrices \(\textbf{M}_{r}^{h}, \textbf{M}_{r}^{t} \in \mathbb{R}^{d \times d}\) for the head and tail role respectively. They are stored in an
Embedding
matrix. The representations are then passed to theSEInteraction
function to obtain scores.Initialize SE.
- Parameters:
embedding_dim (int) – The entity embedding dimension \(d\). Is usually \(d \in [50, 300]\).
scoring_fct_norm (int) – The norm used with
torch.linalg.vector_norm()
. Typically is 1 or 2.power_norm (bool) – Whether to use the p-th power of the \(L_p\) norm. It has the advantage of being differentiable around 0, and numerically more stable.
entity_initializer (str | Callable[[Tensor], Tensor] | None) – Entity initializer function. Defaults to
pykeen.nn.init.xavier_uniform_()
.entity_constrainer (str | Callable[[Tensor], Tensor] | None) – Entity constrainer function. Defaults to
torch.nn.functional.normalize()
.entity_constrainer_kwargs (Mapping[str, Any] | None) – Keyword arguments to be used when calling the entity constrainer.
relation_initializer (str | Callable[[Tensor], Tensor] | None) – Relation initializer function. Defaults to
pykeen.nn.init.xavier_uniform_norm_()
kwargs – Remaining keyword arguments to forward to
ERModel
Attributes Summary
The default strategy for optimizing the model's hyper-parameters
Attributes Documentation