CompGCN
- class CompGCN(*, triples_factory: CoreTriplesFactory, embedding_dim: int = 64, encoder_kwargs: Mapping[str, Any] | None = None, interaction: str | Interaction[Tensor, RelationRepresentation, Tensor] | None = None, interaction_kwargs: Mapping[str, Any] | None = None, **kwargs)[source]
Bases:
ERModel
[Tensor
,RelationRepresentation
,Tensor
]An implementation of CompGCN from [vashishth2020].
This model uses graph convolutions, and composition functions.
Initialize the model.
- Parameters:
triples_factory (CoreTriplesFactory) – The triples factory.
embedding_dim (int) – The embedding dimension to be used if
embedding_specification
is not given explicitly inencoder_kwargs
.encoder_kwargs (Mapping[str, Any] | None) – Additional keyword arguments for the encoder, cf.
pykeen.nn.representation.CombinedCompGCNRepresentations
.interaction (Interaction) – The interaction function to use as decoder.
interaction_kwargs (Mapping[str, Any] | None) – Additional keyword based arguments for the interaction function.
kwargs – Additional keyword based arguments passed to
pykeen.models.ERModel
.
Attributes Summary
The default strategy for optimizing the model's hyper-parameters
Attributes Documentation