HolE
- class HolE(*, embedding_dim: int = 200, entity_initializer: str | ~typing.Callable[[~torch.Tensor], ~torch.Tensor] | None = <function xavier_uniform_>, entity_constrainer: str | ~typing.Callable[[~torch.Tensor], ~torch.Tensor] | None = <function clamp_norm>, entity_constrainer_kwargs: ~collections.abc.Mapping[str, ~typing.Any] | None = None, entity_representation_kwargs: ~collections.abc.Mapping[str, ~typing.Any] | None = None, relation_initializer: str | ~typing.Callable[[~torch.Tensor], ~torch.Tensor] | None = <function xavier_uniform_>, relation_representation_kwargs: ~collections.abc.Mapping[str, ~typing.Any] | None = None, **kwargs)[source]
Bases:
ERModel
[Tensor
,Tensor
,Tensor
]An implementation of HolE from [nickel2016].
This model represents both entities and relations as \(d\)-dimensional vectors stored in an
Embedding
matrix. The representations are then passed to theHolEInteraction
function to obtain scores.Note
The original paper describes modelling the probability as \(\sigma(f(h, r, t))\), however, since the margin ranking loss is used for all experiments, the implementation of the score function does not include the \(\sigma\).
See also
Initialize the model.
- Parameters:
embedding_dim (int) – the embedding dimension (for entities and relations)
entity_initializer (str | Callable[[Tensor], Tensor] | None) – the initializer for entity representations
entity_constrainer (str | Callable[[Tensor], Tensor] | None) – the constrainer for entity representations
entity_constrainer_kwargs (Mapping[str, Any] | None) – keyword-based parameters passed to the constrainer. If None, use
entity_constrainer_default_kwargs
entity_representation_kwargs (Mapping[str, Any] | None) – additional keyword-based parameters passed to the entity representation
relation_initializer (str | Callable[[Tensor], Tensor] | None) – the initializer for relation representations
relation_representation_kwargs (Mapping[str, Any] | None) – additional keyword-based parameters passed to the entity representation
kwargs – additional keyword-based parameters passed to
ERModel.__init__()
Attributes Summary
The default settings for the entity constrainer
The default strategy for optimizing the model's hyper-parameters
Attributes Documentation
- entity_constrainer_default_kwargs = {'dim': -1, 'maxnorm': 1.0, 'p': 2}
The default settings for the entity constrainer