DistMA

class DistMA(embedding_dim=256, entity_initializer=None, entity_initializer_kwargs=None, entity_normalizer=None, entity_normalizer_kwargs=None, relation_initializer=None, relation_initializer_kwargs=None, **kwargs)[source]

Bases: Generic[pykeen.typing.HeadRepresentation, pykeen.typing.RelationRepresentation, pykeen.typing.TailRepresentation], pykeen.models.nbase._NewAbstractModel

An implementation of DistMA from [shi2019].

Initialize DistMA via the pykeen.nn.modules.DistMAInteraction interaction.

Parameters
  • embedding_dim (int) – The entity embedding dimension \(d\).

  • entity_initializer (Union[str, Callable[[FloatTensor], FloatTensor], None]) – Entity initializer function. Defaults to None

  • entity_initializer_kwargs (Optional[Mapping[str, Any]]) – Keyword arguments to be used when calling the entity initializer

  • entity_normalizer (Union[str, Callable[[FloatTensor], FloatTensor], None]) – Entity normalizer function. Defaults to None

  • entity_normalizer_kwargs (Optional[Mapping[str, Any]]) – Keyword arguments to be used when calling the entity normalizer

  • relation_initializer (Union[str, Callable[[FloatTensor], FloatTensor], None]) – Relation initializer function. Defaults to None

  • relation_initializer_kwargs (Optional[Mapping[str, Any]]) – Keyword arguments to be used when calling the relation initializer

  • kwargs – Remaining keyword arguments passed through to pykeen.models.ERModel.

Attributes Summary

hpo_default

The default strategy for optimizing the model’s hyper-parameters

Attributes Documentation

hpo_default: ClassVar[Mapping[str, Any]] = {'embedding_dim': {'high': 256, 'low': 16, 'q': 16, 'type': <class 'int'>}}

The default strategy for optimizing the model’s hyper-parameters