MuRE

class MuRE(*, embedding_dim: int = 200, p: int = 2, power_norm: bool = True, entity_initializer: str | ~typing.Callable[[~torch.Tensor], ~torch.Tensor] | None = <function normal_>, entity_initializer_kwargs: ~collections.abc.Mapping[str, ~typing.Any] | None = None, entity_bias_initializer: str | ~typing.Callable[[~torch.Tensor], ~torch.Tensor] | None = <function zeros_>, relation_initializer: str | ~typing.Callable[[~torch.Tensor], ~torch.Tensor] | None = <function normal_>, relation_initializer_kwargs: ~collections.abc.Mapping[str, ~typing.Any] | None = None, relation_matrix_initializer: str | ~typing.Callable[[~torch.Tensor], ~torch.Tensor] | None = <function uniform_>, relation_matrix_initializer_kwargs: ~collections.abc.Mapping[str, ~typing.Any] | None = None, **kwargs)[source]

Bases: ERModel

An implementation of MuRE from [balazevic2019b].

Initialize MuRE via the pykeen.nn.modules.MuREInteraction interaction.

Parameters:

Attributes Summary

hpo_default

The default strategy for optimizing the model's hyper-parameters

Attributes Documentation

hpo_default: ClassVar[Mapping[str, Any]] = {'embedding_dim': {'high': 256, 'low': 16, 'q': 16, 'type': <class 'int'>}, 'p': {'high': 2, 'low': 1, 'type': <class 'int'>}}

The default strategy for optimizing the model’s hyper-parameters